Aviso sobre el Uso de cookies: Utilizamos cookies propias y de terceros para mejorar la experiencia del lector y ofrecer contenidos de interés. Si continúa navegando entendemos que usted acepta nuestra política de cookies. Ver nuestra Política de Privacidad y Cookies
Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respetuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Jueves, 15 enero 2015
Medicina

Validan un modelo matemático sobre la evolución de los tumores

Dentro de las actividades de la nueva línea de investigación sobre 'dinámica y física del cáncer’, que el Grupo de Dinámica No Lineal, Teoría del Caos y Sistemas Complejos de la Universidad Rey Juan Carlos (URJC) (España) viene desarrollando, se ha conseguido validar un modelo formado por tres poblaciones celulares: cancerígenas, sanas y efectoras de la respuesta inmunitaria.

 

Entre otras, se ha logrado generalizar la ley de dePillis-Radunskaya-Wiseman, que rige la respuesta inmunitaria celular. Los resultados de estas investigaciones han sido recientemente publicados en el Bulletin of Mathematical Biology. Los avances en las técnicas de inmunoterapia contra el cáncer también fueron, para la revista Science, el mayor hito científico del 2013.

 

Los nuevos tratamientos pretenden reforzar el sistema defensivo frente a las células cancerígenas. La ley de dePillis-Radunskaya-Wiseman básicamente establece la velocidad con la que el sistema inmune destruye un tumor. Cuando una célula inmunitaria reconoce a una célula cancerígena, procede a inducir su muerte o apoptosis mediante la perforación de su membrana y la introducción de unas proteínas. Ello implica que, aún cuando las células efectoras sean muy eficaces, la geometría del tumor tiene importancia.

 

[Img #24624]

 

Llegado un punto, no importa cuántas células efectoras de más haya, dado que al no estar en contacto, apenas influye. Esto hace que la función que rige la tasa de destrucción de las células cancerígenas sature, alcanzando un valor máximo. El cómo se alcance ese valor máximo dependerá también del tamaño del tumor. Pero cuando las células efectoras son ineficaces en la destrucción del tumor, no se observa saturación en la práctica, lo cual puede probarse matemáticamente.

 

En los casos intermedios, la ley que mejor representa la destrucción de las células cancerígenas contiene aspectos de los dos casos extremos. El análisis del modelo matemático en el marco de la dinámica no lineal permite hacer algunas predicciones, como por ejemplo una estimación del nivel de estimulación de las células efectoras para destruir plenamente el tumor.

 

Se espera que el nuevo modelo desarrollado sirva de fundamento para el desarrollo de modelos más complejos. De hecho, en la actualidad se están desarrollando modelos híbridos de autómatas celulares para mostrar que todas las hipótesis planteadas en el artículo publicado por los investigadores de la URJC en relación con esa ley son suficientes para explicarla, aunque podría haber otras. (Fuente: Universidad Rey Juan Carlos)

Noticias relacionadas

Copyright © 1996-2017 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.
Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Todos los textos y gráficos son propiedad de sus autores. Prohibida la reproducción total o parcial por cualquier medio sin consentimiento previo por escrito.
Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Amazings® / NCYT® • Términos de usoPolítica de PrivacidadMapa del sitio
© 2017 • Todos los derechos reservados - Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Powered by FolioePress