Aviso sobre el Uso de cookies: Utilizamos cookies propias y de terceros para mejorar la experiencia del lector y ofrecer contenidos de interés. Si continúa navegando entendemos que usted acepta nuestra política de cookies. Ver nuestra Política de Privacidad y Cookies
Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respetuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Martes, 28 abril 2015
Bioquímica

Un nuevo método en 3D mejora el estudio de las proteínas

Investigadores del Instituto de Biotecnología y Biomedicina de la Universitat Autònoma de Barcelona (IBB-UAB) y de la Universidad de Varsovia han elaborado un nuevo sistema, AGGRESCAN3D (A3D), que analiza en 3D la estructura de las proteínas globulares plegadas y optimiza la predicción de su propensión a formar agregados proteicos tóxicos. Con el nuevo algoritmo las proteínas también se pueden modelar para estudiar los efectos patogénicos de la agregación o rediseñarlas con finalidades terapéuticas.

 

El conocimiento actual de las bases moleculares de la agregación proteica, causante de numerosas patologías, ha generado una serie de algoritmos para identificar las regiones de las proteínas propensas a agregar. Entre ellos, AGGRESCAN, desarrollado hace ocho años por los mismos investigadores del IBB, y que fue uno de los primeros métodos computacionales que se crearon a tal fin. Pero la mayoría de estos algoritmos analiza solo las regiones que están en la secuencia lineal de las proteínas. Esto dificulta predecir las propiedades de agregación de las proteínas globulares, donde estas secuencias están a menudo protegidas dentro de su estructura esférica nativa.

 

El A3D, que se ha implementado como un servidor web de libre acceso para el mundo académico, supera estas limitaciones con una aproximación basada en la estructura de las proteínas desde estados plegados. Según el trabajo, publicado en Nucleic Acids Research, el nuevo algoritmo tiene una precisión significativamente más alta que los basados en secuencias lineales para predecir las propiedades de agregación de las proteínas globulares y aporta nuevas e importantes prestaciones, entre las que destaca la posibilidad de modelar fácilmente mutaciones patogénicas o rediseñar proteínas de interés terapéutico, como anticuerpos, con funcionalidad incrementada.

 

“Hasta el momento, el A3D es el algoritmo más rápido disponible para predecir la agregación de proteínas que puede trabajar en un modo dinámico, esto es, teniendo en cuenta la flexibilidad de la estructura de la proteína. Esto nos permite modelar agregaciones atribuibles a las fluctuaciones naturales de la estructura, así como las que están causadas por mutaciones patogénicas desestabilizadoras y predecir su impacto en la propensión a la agregación”, señala Salvador Ventura, investigador del IBB y del departamento de Bioquímica y Biología Molecular de la UAB, que ha coordinado la creación del nuevo método.

 

[Img #27151]


 
El nuevo algoritmo se puede aplicar en cualquier proteína de la cual se conoce la estructura o que pueda ser generada por modelización. Para validar el nuevo método, los investigadores han usado proteínas con propiedad de agregación caracterizadas ya experimentalmente. En el modo estático, se pueden estudiar proteínas individuales o complejos proteicos de hasta 20.000 átomos y proteínas de hasta 400 aminoácidos en el modo dinámico.

 

La agregación proteica ha pasado de ser un área ignorada de la química de proteínas a una cuestión clave en biomedicina y biotecnología. “El mal plegamiento de las proteínas y la agregación subsecuente está detrás de un número creciente de desórdenes humanos, como el alzhéimer, el párkinson o la diabetes tipo II, y es una de las barreras más importantes para diseñar y fabricar proteínas para aplicaciones terapéuticas. Estas terapias, que implican el uso de anticuerpos monoclonales, factores de crecimiento o la sustitución de enzimas, han demostrado ya tener una alta precisión hacia sus dianas moleculares, por ello profundizar en su estudio resulta tan trascendente”, concluye Ventura. (Fuente: UAB)

Quizá también puedan interesarle estos enlaces...

Copyright © 1996-2017 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.
Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Todos los textos y gráficos son propiedad de sus autores. Prohibida la reproducción total o parcial por cualquier medio sin consentimiento previo por escrito.
Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Amazings® / NCYT® • Términos de usoPolítica de PrivacidadMapa del sitio
© 2017 • Todos los derechos reservados - Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Powered by FolioePress