Aviso sobre el Uso de cookies: Utilizamos cookies propias y de terceros para mejorar la experiencia del lector y ofrecer contenidos de interés. Si continúa navegando entendemos que usted acepta nuestra política de cookies. Ver nuestra Política de Privacidad y Cookies
Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respetuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Jueves, 18 junio 2015
Neurología

Nuevos biomateriales poliméricos para la reparación de tejido neural tras una lesión cerebral

Los profesores de la Facultad de Ciencias de la Salud de la Universidad CEU Cardenal Herrera (CEU-UCH) José Miguel Soria López y María Ángeles García Esparza, en España, han participado en un nuevo estudio que demuestra la eficacia de implantes sintéticos biocompatibles para la regeneración de tejidos neuronales dañados por una lesión. En su estudio, publicado en Neuroscience Letters, los implantes fabricados con un copolímero de acrilato, en concreto, acrilato de etilo e hidroxiacrilato de etilo, han permitido, en solo ocho semanas, la regeneración del tejido cerebral dañado. Los profesores de la CEU-UCH han colaborado con investigadores de la UPV, la Complutense y el Hospital Clínico San Carlos de Madrid en este trabajo, que da un nuevo impulso al uso de biomateriales poliméricos para la fabricación de implantes que favorezcan la neurorregeneración.

 

Según explica el profesor de la CEU-UCH, José Miguel Soria, investigador principal del Grupo en Neuroprotección y neurorreparación en el sistema nervioso central de esta Universidad, el estudio se ha realizado in vivo, en modelos animales, mediante el implante de estructuras tridimensionales con canales, fabricadas con copolímeros de acrilato, en criolesiones inducidas en el tejido cerebral de ratas adultas. “Solo ocho semanas después del implante de estas estructuras de material polimérico biocompatible hemos observado cómo su interior es colonizado por nuevas células neuronales progenitoras, cuando el implante se realiza cerca de nichos neurogénicos, como la zona subventricular. De modo que el biomaterial actúa como puente y ayuda en procesos de reparación del tejido dañado, gracias a esta migración de células neuronales desde la zona subventricular hacia la zona del daño cerebral”, señala el profesor Soria.

 

En el estudio también se ha observado la misma migración hacia estas estructuras implantadas en las áreas lesionadas de otro tipo de células: las células de glía y las células endoteliales, que favorecen la generación de nuevos vasos sanguíneos en la zona dañada, necesarios para la regeneración de los tejidos neuronales lesionados. Además, la cicatriz que se genera en el tejido neural al colocar el implante ha sido mínima, lo que favorece la conexión entre implante y tejido neural, fundamental para el éxito de estos biomateriales. La profesora de la CEU-UCH y miembro de este Grupo de investigación María Ángeles Esparza destaca que estos resultados permiten confirmar que “este tipo de copolímero de acrilato posee una química celularmente compatible, que lo hace adecuado para su interacción en tejidos neuronales”.

 

[Img #28577]

 

Este proceso de migración hacia la zona dañada, que se produce para recubrir el bioimplante, no se observa, sin embargo, en tejidos dañados donde no se han insertado estas estructuras poliméricas, ni tampoco en los animales empleados como control en el estudio. Por tanto, “sin estos implantes –destaca el profesor Soria- las áreas lesionadas no tienen ninguna posibilidad de repararse por sí mismas. Por lo que estos resultados abren la puerta para la aplicación clínica futura de este tipo de biomateriales poliméricos en el tratamiento eficaz de las lesiones cerebrales”.

 

Los profesores de la CEU-UCH José Miguel Soria y María Ángeles García Esparza, investigadores del Instituto de Ciencias Biomédicas de esta Universidad, han participado en el equipo investigador, integrado por Cristina Martínez Ramosa, del Centro de Biomateriales de la Universitat Politècnica de València (UPV); Ulises Gómez-Pinedo, del Servicio de Neurocirugía del Hospital Clínico San Carlos de Madrid; Juan A. Barcia, del Departamento de Cirugía de la Universidad Complutense de Madrid; y Manuel Monleón Pradas, también de la UPV. Buena parte del equipo de investigadores pertenece al CIBER de Bioingeniería, Biomateriales y Nanomedicina y a la Red de Terapia Celular (TerCel), ambos del Instituto Nacional de Salud Carlos III de Madrid. (Fuente: CEU-UCH/DICYT)

Quizá también puedan interesarle estos enlaces...

Copyright © 1996-2017 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.
Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Todos los textos y gráficos son propiedad de sus autores. Prohibida la reproducción total o parcial por cualquier medio sin consentimiento previo por escrito.
Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Amazings® / NCYT® • Términos de usoPolítica de PrivacidadMapa del sitio
© 2017 • Todos los derechos reservados - Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Powered by FolioePress