Aviso sobre el Uso de cookies: Utilizamos cookies propias y de terceros para mejorar la experiencia del lector y ofrecer contenidos de interés. Si continúa navegando entendemos que usted acepta nuestra política de cookies. Ver nuestra Política de Privacidad y Cookies
Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respetuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Miércoles, 7 octubre 2015
Nanotecnología

Científicos del IBEC desarrollan por primera vez Nanomotores biocompatibles que se propulsan con azúcar

Investigadores del Instituto de Bioingeniería de Cataluña (IBEC) (España) y sus colaboradores han desarrollado nanomotores para aplicaciones biomédicas que son propulsados por enzimas, como la glucosa oxidasa,
que los hace completamente biocompatibles.

 

En un estudio publicado en la revista Nanoletters, el Prof. Samuel Sánchez, responsable de grupo del IBEC e investigador ICREA, y sus colaboradores en el Max Planck Institute for Intelligent Systems (MPI-IS), la Universidad de Tübingen y el Max Planck for Solid State Research, en Alemania, describen la fabricación del primer nanomotor sintético en el mundo propulsado por una enzima que utiliza combustible biocompatible, lo que solventa las desventajas de los sistemas actuales.

 

Este nuevo mini motor biocompatible está hecho a partir de sílice mesoporoso, que es hueco, y que además no es dañino para las células ni para los tejidos. Se podrá utilizar en muchas aplicaciones biomédicas ya que su propulsión es debida a la reacción catalítica de tres enzimas que se encuentran de forma natural el cuerpo; la catalasa, la ureasa y la glucosa oxidasa. Las reacciones enzimáticas dan energía a las nanopartículas Janus -partículas cuyas superficies tienen dos propiedades físicas diferentes-, teniendo lugar de forma asimétrica en solo una de las caras del nanomotor, lo que provoca la propulsión en la dirección opuesta.

 

“Para que su uso sea seguro en aplicaciones biomédicas en el interior del organismo, las nanopartículas tienen que estar hechas de materiales biocompatibles y biodegradables, así como ser capaces tanto de moverse de forma autónoma utilizando combustibles de origen biológico como de liberar la carga en un punto concreto –como es el caso de la liberación de fármacos– a la pequeña escala,” dice Samuel Sánchez, quien dirige al que ha sido descrito como ‘uno de los grupos líderes en el campo de la investigación en nanomotores”, el grupo de Dispositivos Inteligentes Nano-Bio del IBEC y del MPI-IS de Stuttgart. “Hemos conseguido todas estas propiedades con nuestros nuevos nanomotores. Para su arquitectura, hemos utilizado un material que ofrece una gran capacidad de liberación de fármacos debido a su estructura hueca; y para la propulsión, hemos basado nuestros métodos en el reciente descubrimiento de que las enzimas pueden actuar como nanomotores autopropulsados, así como de ser ancladas a objetos artificiales mayores, como los nanotubos de carbono, para proporcionar una fuerza de propulsión utilizando reacciones catalíticas”.

 

Este tipo de reacciones biocatalíticas desencadenadas por enzimas actúan a modo de propulsión no-tóxica, debido a que están presentes en el ambiente biológico y tienen un elevado potencial de reacción. Se pueden utilizar diferentes combinaciones de enzima/combustible como la catalasa y el peróxido de hidrógeno o la glucosa y la glucosa oxidasa, lo que significa que el método es muy versátil con un potencial que se podrá extender a otras enzimas.

 

Los micro y nano sistemas desarrollados anteriormente estaban muy limitados para ser utilizados en el ámbito biomédico, ya que para propulsarse utilizaban la descomposición de peróxido de hidrógeno con platino como catalizador, lo que provocaba que en algunos caos la propulsión fuese de muy corta duración o, sencillamente, se convirtieran en nanosistemas pasivos incapaces de moverse de forma autónoma.

 

El siguiente paso será explorar cómo incrementar la fuerza conductora y la guía de sus nanomotores biocompatibles mediante métodos de manipulación externa, como la quimiotaxis, el control magnético o los ultrasonidos, dirigiéndolos a un movimiento direccional para la liberación activa de fármacos en localizaciones específicas.

 

Los colaboradores de la Universidad de Tübingen también han medido, por primera vez, mediantes unas pinzas ópticas, la fuerza de propulsión de los nanomotores, lo que hace posible entender un poco más cómo se comportan las nanopartículas propulsadas. (Fuente: IBEC)

Quizá también puedan interesarle estos enlaces...

Copyright © 1996-2017 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.
Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Todos los textos y gráficos son propiedad de sus autores. Prohibida la reproducción total o parcial por cualquier medio sin consentimiento previo por escrito.
Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Amazings® / NCYT® • Términos de usoPolítica de PrivacidadMapa del sitio
© 2017 • Todos los derechos reservados - Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Powered by FolioePress