Miércoles, 12 de Noviembre de 2025

Actualizada Martes, 11 de Noviembre de 2025 a las 11:10:57 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Miércoles, 11 de Mayo de 2016
Astrofísica

El neutrino Caponata impulsa una nueva forma de astronomía

Los científicos del experimento IceCube, que desde la Antártida detectan neutrinos cósmicos, han bautizado a los más espectaculares con los nombres de personajes de Barrio Sésamo. Así, los neutrinos HESE-20 y HESE-14 se conocen como Epi y Blas, y al denominado oficialmente HESE-35, descubierto el 4 de diciembre de 2012, lo llamaron Caponata (Big Bird, en inglés, también conocido como Paco Pico o Abelardo en algunos programas de televisión hispanos).

 

Un equipo internacional de astrónomos informa ahora en Nature Physics que ha logrado descubrir el origen del neutrino Caponata. Con un 95% de probabilidad la fuente es un blázar, una potente explosión en radiofrecuencia y rayos gamma asociada a un agujero negro situado en la lejana galaxia PKS B1424−418.

 

“Nuestro trabajo muestra la primera asociación verosímil entre los neutrinos cósmicos y un objeto exterior a nuestra galaxia, lo que da un impulso definitivo al nacimiento de una nueva disciplina científica: la astronomía de neutrinos”, destaca Eduardo Ros, profesor de la Universidad de Valencia, investigador del Instituto Max Planck de Radioastronomía en Bonn (Alemania) y coautor del estudio.

 

El profesor recuerda que los neutrinos son las partículas más rápidas, ligeras y esquivas de la naturaleza, además de ser extremadamente energéticas. De hecho, HESE-35 fue el neutrino más energético conocido (2 petaelectronvóltios, unos dos mil billones de electronvoltios) en el momento de su descubrimiento.

 

Esta energía es un billón de veces superior a la de una radiografía dental, aunque concentrada en una sola partícula con masa un millón de veces menor que la del electrón.

 

[Img #35834]

 

El detector de neutrinos IceCube puede fotografiar la luz (llamada radiación de Cherenkov) generada por la cascada de partículas que produce un neutrino al chocar con el hielo en la Antártida. Así han registrado la energía y dirección del neutrino HESE-35 o Caponata (a la izquierda). (Foto: IceCube/NSF)

 

El detector IceCube, que registra la luz que produce un neutrino al chocar contra el hielo, pudo determinar la posición de Caponata con una precisión de 32 grados –un círculo equivalente a 64 lunas llenas–, pero otros dos instrumentos ayudaron a afinar la búsqueda. Uno fue el telescopio espacial de rayos gamma Fermi de la NASA, que con su dispositivo LAT pudo observar un aumento de un factor 30 en el brillo de la galaxia PKS B1424−418.

 

Por su parte, desde la Tierra, una red de radiotelescopios de Australia, Sudáfrica, Chile y la Antártida denominada TANAMI confirmó que el brillo de esa galaxia se multiplicó por cuatro entre finales de 2011 y comienzos de 2013.

 

“Tras cribar todas las posibles fuentes alternativas, todo encajaba: HESE-35 tiene que haberse originado en el mismo objeto que brilla fuertemente en radio y en rayos gamma”, señala Felicia Krauss, estudiante de doctorado en la Universidad de Wurzburgo  que ha contribuido con su tesis a la investigación.

 

“Ha sido una suerte que estuviésemos estudiando galaxias con el proyecto TANAMI y que hayamos encontrado a la ‘culpable’ de emitir al neutrino récord”, añade Matthias Kadler, profesor en la misma universidad y primer responsable del artículo.

 

Los investigadores han confirmado con otros datos astronómicos que la probabilidad estadística de que PKS B1424−418 y Caponata no estén asociados es solo del 5%. “Todavía existe una posibilidad de que esa galaxia no sea el origen de HESE-35, pero es nuestro principal sospechoso y caben pocas dudas”, afirma Ros.

 

“La astronomía de neutrinos acaba de nacer”, añade el profesor, que concluye: “Pronto podremos localizar el origen de un neutrino con una precisión de 0,6 grados. Si seguimos estudiando el cosmos con los telescopios disponibles estaremos más cerca de desvelar los secretos del origen y la física de estos fenómenos, que hasta hace bien poco escapaban a nuestra comprensión”. (Fuente: Observatori Astronòmic/UV)

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Quizás también te interese...

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.