Aviso sobre el Uso de cookies: Utilizamos cookies propias y de terceros para mejorar la experiencia del lector y ofrecer contenidos de interés. Si continúa navegando entendemos que usted acepta nuestra política de cookies. Ver nuestra Política de Privacidad y Cookies
Miércoles, 22 junio 2016
Nanotecnología

ADN para conducir electricidad en dispositivos electrónicos nanométricos

El ADN es el material del que están hechos los planos de construcción de los seres vivos, por así decirlo. Pero también posee propiedades útiles para el sector de la electrónica. Entre ellas, destaca su capacidad de conducir una carga eléctrica. Esto lo convierte en la clave potencial para lograr desarrollar nuevos nanodispositivos electrónicos fabricables mediante un proceso que reúna máxima eficacia y bajo coste.

 

El equipo de Nongjian (N.J.) Tao, de la Universidad Estatal de Arizona, y David Beratan, de la Universidad Duke, ambas instituciones en Estados Unidos, ha conseguido manipular ADN para ajustar de forma más fina el flujo de electricidad que pase a través de él. Este logro brinda la capacidad de hacer que el ADN se comporte de formas diferentes, provocando que los electrones fluyan suavemente como lo harían a través de un hilo metálico conductor común, o haciéndolos saltar como en los materiales semiconductores que se emplean en nuestros ordenadores, teléfonos celulares y otros dispositivos.

 

Los resultados de esta línea de investigación podrían proporcionar un marco de trabajo para crear nanohilos de ADN más estables y eficientes, y para averiguar cómo podría usarse la conductividad del ADN para identificar daños genéticos.

 

Las hebras de ADN están hechas como si fueran cadenas, con cada eslabón conformado por una de cuatro bases moleculares, cuya secuencia codifica las instrucciones genéticas para nuestras células. Como las cadenas metálicas, las hebras de ADN pueden cambiar fácilmente de forma, doblarse, enroscarse y moverse a medida que colisionan con otras moléculas a su alrededor.

 

[Img #36812]

 

En distancias cortas, los electrones fluyen a través del ADN mediante el efecto de túnel cuántico, dispersándose deprisa como lo hacen las ondas de agua en un estanque. A través de distancias más largas, se comportan más como partículas e intervienen los saltos. Es como intentar cruzar un río, algo que puede hacerse con rapidez a través de un puente, o que también podría hacerse recurriendo a saltar de una roca a otra, si hay una cantidad suficiente de ellas asomando en la superficie del agua. Los electrones en el ADN se comportan de formas similares, dependiendo de la información química contenida en este último. (Imagen: Jason Drees y Limin Xiang, Biodesign Institute, Arizona State University)

 

Todos estos movimientos pueden alterar la capacidad de los electrones de viajar como ondas. Anteriormente se creía que los electrones solo podrían ser compartidos entre como mucho tres bases.

 

Valiéndose de simulaciones por ordenador, el equipo de Beratan encontró que ciertas secuencias de bases podrían mejorar el intercambio de electrones, llevando a un comportamiento semejante al de las ondas a largas distancias. En particular, estos científicos encontraron que apilar series alternativas de cinco bases de guanina (G) creaba la mejor conductividad eléctrica.

 

A continuación, el grupo de Tao llevó a cabo experimentos de conductividad en hebras cortas (de 6 a 16 bases) de ADN, que llevaban bloques alternos de 3 a 8 bases de guanina. Conectando su ADN de pruebas a un par de electrodos de oro, el equipo pudo controlar una pequeña corriente para medir la cantidad de carga eléctrica fluyendo a través de la molécula.

 

Los resultados de los experimentos han confirmado las predicciones de la teoría.

 

Información adicional

Quizá también puedan interesarle estos enlaces...

Copyright © 1996-2015 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.
Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Todos los textos y gráficos son propiedad de sus autores. Prohibida la reproducción total o parcial por cualquier medio sin consentimiento previo por escrito.
Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Amazings® / NCYT® • Términos de usoPolítica de PrivacidadMapa del sitio
© 2017 • Todos los derechos reservados - Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Powered by FolioePress