Microbiología
Descubierto un nuevo mecanismo que permite a una bacteria tolerar hidrocarburos aromáticos tóxicos
El microorganismo ‘Azoarcus sp. CIB’ es capaz de degradar compuestos como el tolueno y el xileno, entre otros. Un equipo de científicos, liderados por el Consejo Superior de Investigaciones Científicas (CSIC), en España, ha identificado un nuevo mecanismo que permite que esta bacteria resista a elevadas concentraciones de hidrocarburos aromáticos tóxicos en ausencia de oxígeno.
Los resultados del trabajo, publicados en la revista Proceedings of the National Academy of Sciences (PNAS), podrían ayudar a desarrollar nuevas estrategias de detoxificación y bioconversión de contaminantes.
Los hidrocarburos aromáticos tales como el benceno, el tolueno, el xileno y el estireno, entre otros, son compuestos orgánicos que poseen en su estructura un anillo aromático que los convierte en unos compuestos muy estables, difíciles de degradar y con tendencia a acumularse en el medio ambiente, lo que constituye una fuente importante de contaminación.
“Estas sustancias están presentes en gran cantidad en los combustibles fósiles, como el petróleo y el carbón, y son tóxicas para los seres vivos, ya que se incorporan en las membranas celulares e impiden el correcto funcionamiento de las células. Sin embargo, ciertas bacterias se han especializado en la utilización de los hidrocarburos aromáticos como fuente de carbono y energía. La utilización de estas bacterias para la eliminación y biotransformación de los hidrocarburos aromáticos contaminantes en compuestos menos tóxicos y de valor añadido es una estrategia respetuosa con el medio ambiente y de gran interés industrial”, explica el investigador del CSIC Eduardo Díaz, del Centro de Investigaciones Biológicas.
Imagen de microscopio de la bacteria Azoarcus sp. CIB. (Foto: CSIC)
La clave del mecanismo identificado en este estudio es la proteína TolR, un regulador de dos componentes híbrido. Se trata del primer sistema biológico descrito capaz de detectar hidrocarburos aromáticos y responder a esa señal mediante hidrólisis de la molécula di-GMP cíclico.
Dicha molécula, que actúa de segundo mensajero, está presente en todas las bacterias y participa en el control de procesos tan relevantes como la formación de biofilms y la virulencia en patógenos.
“Nuestro trabajo revela una nueva función del di-GMP cíclico, ya que hemos visto que controla la resistencia bacteriana a elevadas concentraciones de hidrocarburos aromáticos, de tal forma que la disminución de los niveles de di-GMP cíclico protegen a la célula de la toxicidad del hidrocarburo”, añade Díaz.
El estudio ha sido realizado en colaboración con la Universidad de Washington (Seattle, Estados Unidos). (Fuente: Consejo Superior de Investigaciones Científicas)