Aviso sobre el Uso de cookies: Utilizamos cookies propias y de terceros para mejorar la experiencia del lector y ofrecer contenidos de interés. Si continúa navegando entendemos que usted acepta nuestra política de cookies. Ver nuestra Política de Privacidad y Cookies
Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respetuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Miércoles, 22 febrero 2017
Ingeniería

El árbol del viento, energía eólica para la ciudad

Diseñar un árbol de ramas de acero y hojas de plástico, que en realidad es un innovador generador de energía eólica, ha sido un verdadero reto para los creadores del Árbol de Viento (l’Arbre à Vent). Una fuente de energía alternativa de apariencia estética y alta eficiencia, especialmente pensada para entornos urbanos.

 

El proyecto l’Arbre à Vent ha sido un verdadero desafío para los ingenieros que han participado en él. Después de tres años de estudio y desarrollo, esta innovadora turbina eólica en forma de árbol es ya una realidad. Se compone de una estructura de acero de 10 metros de alto y 7,5 de ancho, cuyas ramas contienen 63 hojas de material plástico muy resistente (ABS) que capturan el viento y transfieren la energía a través de un generador situado en la base de cada una de ellas. Un solo “árbol de viento” es capaz de generar 3kW de potencia instantánea, y unos 1900 kWh en un año.

 

La ayuda de un equipo de ingenieros expertos en soluciones de simulación ha sido clave para diseñar este innovador y eficiente generador eólico, que puede ‘plantarse’ en cualquier parque o calle sin romper la estética de la ciudad. Por ejemplo, en el distrito parisino de Bourget o en las mismísimas instalaciones de Roland Garros.

 

Los equipos de ingenieros se han tenido que enfrentar a problemas que han requerido diferentes soluciones de simulación. Los softwares de electrónica, fluidos y estructuras han jugado un papel relevante para superar todos los desafíos de ingeniería que planteaba el proyecto.

 

[Img #41962]

 

(Foto: Sheridan C.)

 

-Cada hoja artificial debía capturar el viento disponible con la máxima eficiencia, de manera que su forma, tamaño y orientación eran cruciales. También determinar el número óptimo de hojas y su ubicación en la estructura, para que no interfirieran unas con otras.

 

-Diseñar una pequeña pero potente planta energética en la base de cada hoja, de forma que la rotación provocada por el viento pudiera ser transformada en electricidad, constituía otro importante reto. Así como calcular la óptima velocidad de rotación para maximizar la cantidad de potencia generada.

 

-La resistencia de las hojas y de la estructura ante las fuerzas provocadas por el viento también se tuvieron en cuenta a la hora de diseñar el prototipo.

 

Pero ¿cómo probar toda esta ingente cantidad de posibles variables antes de concebir el diseño óptimo? ¿Cuántos prototipos, pruebas físicas e inversión fueron necesarios para obtener el árbol de viento definitivo? En realidad, todo fue posible gracias al software de simulación, sin necesidad de invertir en innumerables prototipos físicos ni en costosísimas pruebas. Los ingenieros de ANSYS fueron capaces de diseñar y predecir con exactitud todas las variables posibles de manera virtual, utilizando las aplicaciones Mechanical, Fluent y Maxwell del software de ANSYS para enfrentarse a los desafíos estructurales y electromagnéticos que planteaba el proyecto.

 

                · Utilizando la simulación de fluidos dinámicos, fueron capaces de determinar el emplazamiento de las 63 hojas en el árbol, para optimizar la eficiencia de cada una sin interferir en las demás. También la forma de las hojas, su tamaño y el material perfecto (plástico ABS) se diseñaron en base a las numerosas pruebas y posteriores análisis.

 

                · El equipo aerodinámico utilizó las simulaciones para estudiar cómo fluían las corrientes de aire entre las hojas, en diferentes condiciones de dirección y velocidad. Y de esta forma aprovechar al máximo su potencia en cada hoja.

 

                · El software de simulación magnética Dynamic 3-D permitió a los ingenieros determinar el grosor y el material de los discos, el tipo y tamaño de los imanes y el espesor de la apertura de aire en cada uno de los generadores contenidos en las hojas.

 

                · Finalmente, los expertos utilizaron la simulación 3-D Fluent para medir el coeficiente de potencia en una hoja y obtener el ratio óptimo entre la velocidad del viento y la velocidad de rotación.

 

El resultado de este proyecto desarrollado por la empresa New Wind con el apoyo tecnológico de ANSYS, es una innovadora fuente de energía, limpia, estética, silenciosa y eficiente, pensada para mejorar la calidad de vida en las ciudades de hoy y de mañana. (Fuente: Sheridan C.)

Quizá también puedan interesarle estos enlaces...

Copyright © 1996-2017 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.
Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Todos los textos y gráficos son propiedad de sus autores. Prohibida la reproducción total o parcial por cualquier medio sin consentimiento previo por escrito.
Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Amazings® / NCYT® • Términos de usoPolítica de PrivacidadMapa del sitio
© 2017 • Todos los derechos reservados - Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Powered by FolioePress