Aviso sobre el Uso de cookies: Utilizamos cookies propias y de terceros para mejorar la experiencia del lector y ofrecer contenidos de interés. Si continúa navegando entendemos que usted acepta nuestra política de cookies. Ver nuestra Política de Privacidad y Cookies
Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respetuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Jueves, 6 abril 2017
Física

La desintegración radiactiva que elude a los físicos

Esta semana se publica en la revista Nature un nuevo avance en la búsqueda de la llamada desintegración doble beta sin neutrinos (0νββ decay), una desintegración radiactiva que, si se encontrara, demostraría que los neutrinos son sus propias antipartículas.

 

Esto sería un hallazgo revolucionario, porque hay ciertas extensiones del modelo estándar de la física de partículas que pueden explicar el dominio de la materia sobre la antimateria en el universo si se asume que neutrinos y antineutrinos son lo mismo.

 

Si esto es cierto, entonces debería existir una forma de desintegración, la 0νββ decay, en la que un núcleo atómico se disocia y emite dos electrones y ningún neutrino. El problema es que es extremadamente inusual y muy lenta.

 

La vida media para la desintegración doble beta sin neutrinos es por lo menos 15 órdenes de magnitud más larga que la edad del universo, lo que significa que tarda billones de años de media en producirse y que se requiere la supresión de todas las señales de fondo que puedan interferir en su detección.

 

Este último punto es el que ha superado la colaboración científica GERDA (GERmanium Detector Array), un experimento localizado bajo tierra en el Laboratorio Nacional del Gran Sasso (Italia) para detectar la elusiva desintegración usando un isótopo del germanio: el germanio 76 (76Ge).

 

[Img #42922]

 

Las paredes internas del tanque de agua del experimento GERDA están cubiertas por una lámina reflectante que mejora la detección de la luz. (Foto: K. Freund, GERDA collaboration)

 

“Ahora informamos de los primeros datos de la Fase II del experimento GERDA, en los que hemos buscado la desintegración doble beta sin neutrinos en 35,6 kilogramos del isótopo 76Ge y, por primera vez en este campo, sin interferencias del background o fondo gracias a un nuevo sistema (incorporado al equipo) para eliminarlo”, explican los autores en su estudio.

 

Los investigadores reconocen que todavía no han descubierto la ansiada desintegración, pero destacan que han dado un paso importante para conseguirlo, algo en lo que coincide en otro artículo de Nature el físico Phillip Barbeau de la Universidad Duke (EE UU): “La actualización de este experimento es un logro notable, ya que permitirá buscar la desintegración doble beta sin neutrinos con una sensibilidad sin precedentes”.

 

Además de los miembros de GERDA, otros laboratorios aspiran a observar alguna 0νββ decay –que le corresponda desintegrarse justo ahora– en profundas minas subterráneas, lejos de cualquier ‘ruido’ externo. Entre ellos figuran el experimento CANDLES del observatorio japonés de Kamioka (uno de los ganadores del último Breakthrough Prize for Fundamental Physics por sus investigaciones sobre neutrinos) y NEMO 3 en el túnel de Fréjus (Francia).

 

Por su parte, el experimento español NEXT (Neutrino Experiment with a Xenon TPC), liderado por científicos del Instituto de Física Corpuscular (CSIC-Universidad de Valencia), también tratará de demostrar en el laboratorio subterráneo de Canfranc que el neutrino es su propia antipartícula usando el gas noble xenón como material detector.

 

“Lo más interesante sería que se confirmara que durante la desintegración doble beta no se emiten neutrinos, ya que esto implicaría, por principios físicos, que los neutrinos y los antineutrinos son la misma partícula; lo que sería un descubrimiento importantísimo, Premio Nobel seguro”, decía hace unos meses el investigador Javier Menéndez desde la Universidad de Tokio, donde analiza esta desintegración para el caso del calcio 48 con la ayuda de supercomputadoras.

 

Y si resulta que los neutrinos y antineutrinos son la misma partícula sería el primer caso conocido de materia que es antimateria a la vez, lo que generaría una asimetría que serviría para explicar por qué ha triunfado la materia en el universo y no queda antimateria. (Fuente: SINC)

Quizá también puedan interesarle estos enlaces...

Copyright © 1996-2017 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.
Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Todos los textos y gráficos son propiedad de sus autores. Prohibida la reproducción total o parcial por cualquier medio sin consentimiento previo por escrito.
Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Amazings® / NCYT® • Términos de usoPolítica de PrivacidadMapa del sitio
© 2017 • Todos los derechos reservados - Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Powered by FolioePress