Aviso sobre el Uso de cookies: Utilizamos cookies propias y de terceros para mejorar la experiencia del lector y ofrecer contenidos de interés. Si continúa navegando entendemos que usted acepta nuestra política de cookies. Ver nuestra Política de Privacidad y Cookies
Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respetuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Lunes, 3 julio 2017
Química

Los agregados de aminoácidos se estabilizan por puentes de hidrógeno

Un reciente estudio, publicado en la revista Physical Chemistry Chemical Physics, y llevado a cabo por investigadores del Departamento de Química de la Universidad Autónoma de Madrid (UAM), el Instituto de Física de la Materia Condensada (IFIMAC) y el Instituto de Química Avanzada (IAdChem), aporta información fundamental sobre las interacciones entre aminoácidos en agregados moleculares antes de formar las cadenas polipeptídicas.

 

Concretamente, los investigadores han estudiado las fuerzas que mantienen unidos agregados formados por moléculas de β-alanina, un aminoácido lineal presente en los tejidos musculares y cerebrales (formando parte de los péptidos carosina y anserina) y en nutrientes esenciales como la vitamina B5 o ácido pantoténico.

 

Para entender estas interacciones y conocer más sobre las propiedades de las moléculas, los autores realizaron simulaciones mediante cálculos basados en mecánica cuántica. Estas simulaciones, altamente costosas en términos de tiempo y recursos de computación, fueron realizadas en el Centro de Computación Científica de la UAM.

 

Los investigadores estudiaron así más de ochenta estructuras formadas por dos, tres, cuatro y cinco moléculas de β-alanina en fase gas, seleccionando las más estables para la evaluación de sus propiedades. En concreto, valoraron en detalle las interacciones mediante puentes de hidrógeno implicadas en su estructura. La importancia de estas interacciones, radica en la extraordinaria estabilidad que les confiere a estos complejos sistemas moleculares.

 

“En la naturaleza, el átomo de hidrógeno es el más sencillo y abundante en el universo, y juega un papel fundamental, siendo capaz de mantener unidas moléculas tan complejas como los aminoácidos”, indica Dariusz G. Piekarski, estudiante de doctorado del departamento de Química de la UAM y autor principal del trabajo.

 

[Img #44802]

 

Dos moléculas de agua conectadas por un enlace puente de hidrógeno, y ejemplo de una de las estructuras descubiertas. Se trata de un agregado formado por cinco moléculas del aminoácido β-alanina, conectadas por diversos puentes de hidrógeno. (Foto: UAM)

 

Los aminoácidos son moléculas orgánicas fundamentales para la vida. Los más habituales son los que se encuentran en los péptidos y proteínas. La formación de ambas biomoléculas ocurre a través de una reacción química en la que dos aminoácidos interaccionan liberando una molécula de agua y formando un enlace peptídico. Un tercer aminoácido puede a su vez interaccionar por un extremo de la molécula formando un nuevo enlace peptídico, y así se enlazan formando cadenas.

 

Sin embargo, los aminoácidos pueden además establecer otro tipo de fuerzas de unión intermoleculares. Las fuerzas de interacción entre moléculas, son de carácter electrostático y se denominan fuerzas de Van der Waals. Estas fuerzas se caracterizan por ser muy débiles comparadas con el enlace químico.

 

Un tipo de interacción entre moléculas con un carácter muy particular es el enlace de hidrógeno, también denominado ‘enlace por puente de hidrógeno’. Estas fuerzas de unión tienen lugar entre un átomo de hidrógeno enlazado químicamente a una molécula, e interactuando electrostáticamente con otra molécula.

 

Los enlaces de hidrógeno son esenciales para la vida. Son, por ejemplo, los principales responsables de la unión entre moléculas de agua, confiriéndole sus conocidas propiedades macroscópicas. También son los responsables de la estabilidad en la unión de las dos hélices de la estructura del ADN. De forma análoga, en las proteínas una vez formados los enlaces peptídicos, las cadenas se estabilizan mediante puentes de hidrógeno formados entre ellas, confiriéndoles estructura  tridimensional.

 

“En el futuro planeamos extender nuestros estudios evaluando cómo reaccionan los agregados moleculares de aminoácidos frente a radiaciones ionizantes. Para ello estamos trabajando en colaboración con colegas de la Universidad de Caen en Normandía (Francia) y el CNR (Italia), expertos en irradiar moléculas en aceleradores de partículas. Podremos así estudiar su estabilidad y evolución frente a este tipo de radiación”, detalla Sergio Díaz-Tendero, investigador Ramón y Cajal del departamento de Química de la UAM, el IFIMAC y el IAdChem y coautor del trabajo. (Fuente: UAM)

Quizá también puedan interesarle estos enlaces...

Copyright © 1996-2017 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.
Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Todos los textos y gráficos son propiedad de sus autores. Prohibida la reproducción total o parcial por cualquier medio sin consentimiento previo por escrito.
Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Amazings® / NCYT® • Términos de usoPolítica de PrivacidadMapa del sitio
© 2017 • Todos los derechos reservados - Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Powered by FolioePress