Aviso sobre el Uso de cookies: Utilizamos cookies propias y de terceros para mejorar la experiencia del lector y ofrecer contenidos de interés. Si continúa navegando entendemos que usted acepta nuestra política de cookies. Ver nuestra Política de Privacidad y Cookies
Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respetuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Miércoles, 23 noviembre 2011
Física

Convierten un líquido en un sólido aplicándole un campo eléctrico

Los físicos habían predicho que bajo la influencia de un campo eléctrico lo bastante alto, las gotas líquidas de ciertos materiales se solidificarían, formando cristales microscópicos bajo condiciones de temperatura y presión que, sin la influencia del campo, conducirían a gotas en estado líquido. Esta transformación de fase inducida por campos eléctricos se denomina electrocristalización.

El estudio, realizado por científicos del Instituto Tecnológico de Georgia, en Estados Unidos, muestra que con el adecuado campo eléctrico se puede inducir una transición de fase sin alterar los parámetros termodinámicos.

En estas simulaciones, Uzi Landman, David Luedtke y Jianping Gao, todos del citado instituto, comenzaron por explorar un fenómeno que Sir Geoffrey Ingram Taylor describió en 1964, mientras trabajaba en su estudio sobre el efecto de los relámpagos sobre las gotas de lluvia, un efecto expresado como cambios en la forma de las gotas líquidas al pasar por un campo eléctrico. Sin el efecto del campo eléctrico, las gotas líquidas son esféricas. En cambio, adquieren formas similares a las de una aguja en respuesta al campo eléctrico aplicado.

En vez de centrarse en las gotas de agua usadas en los experimentos de Taylor, los investigadores del Instituto Tecnológico de Georgia se centraron en gotas líquidas de formamida de 10 nanómetros de diámetro.

Gracias a usar simulaciones de dinámica molecular desarrolladas en el citado instituto, los científicos pudieron seguir el rastro a la evolución de las gotas con una resolución ultraelevada en cuanto a espacio y tiempo.

[Img #5378]
Estos físicos exploraron la respuesta de las nanogotas de formamida a un campo eléctrico de fuerza variable. Bajo la influencia de un campo de menos de 0,5V/nm, la gota esférica sólo se alargó ligeramente. Sin embargo, cuando se elevó la fuerza del campo hasta un valor crítico cercano a 0,5 V/nm, se comprobó que la gota simulada experimentaba una transición de forma que resultaba en una gota líquida con forma de aguja y orientada en la dirección del campo aplicado. El valor crítico del campo que se halló en las simulaciones concuerda bien con la predicción obtenida en su día por Taylor a partir de consideraciones macroscópicas generales.

Cuando se aumentó aún más la intensidad del campo en las simulaciones, alcanzando un valor cercano a 1,5V/nm, la aguja líquida experimentó una transición de fase que la condujo a la solidificación, formando finalmente un cristal de formamida de una sola pieza.


Copyright © 1996-2017 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.
Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Todos los textos y gráficos son propiedad de sus autores. Prohibida la reproducción total o parcial por cualquier medio sin consentimiento previo por escrito.
Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Amazings® / NCYT® • Términos de usoPolítica de PrivacidadMapa del sitio
© 2017 • Todos los derechos reservados - Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Powered by FolioePress