Aviso sobre el Uso de cookies: Utilizamos cookies propias y de terceros para mejorar la experiencia del lector y ofrecer contenidos de interés. Si continúa navegando entendemos que usted acepta nuestra política de cookies. Ver nuestra Política de Privacidad y Cookies
Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respetuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Domingo, 8 julio 2012
Meteorología

Matemáticos españoles 'persiguen' a los vientos en el agujero de ozono antártico

Una técnica matemática desarrollada por investigadores españoles del Instituto de Ciencias Matemáticas (ICMAT) explica con más precisión que hasta ahora el proceso de intercambio de partículas de uno a otro lado del vórtice polar antártico, el cinturón de vientos huracanados que rodea a la Antártida en las capas medias de su atmósfera. El trabajo ayuda a comprender mejor el comportamiento de estos vientos necesarios para la formación del agujero de ozono y, en especial, los procesos involucrados en la recuperación de la capa de ozono antártica que tiene lugar cada verano austral.

El resultado ha sido presentado en el congreso sobre aplicaciones matemáticas para el estudio de las corrientes oceánicas y atmosféricas que se ha celebrado en el ICMAT, y en el que participaron 50 expertos internacionales en física, matemáticas, oceanografía y ciencias de la atmósfera con el apoyo de la Oficina de Investigación Naval del Departamento de la Marina estadounidense.

La clave del trabajo está en una mejor comprensión de lo que ocurre en el cinturón de vientos de las capas medias de la atmósfera del continente blanco, el llamado ‘vórtice polar antártico’.

Los compuestos CFC no son los únicos responsables de que cada año la capa de ozono antártica adelgace, formando el denominado 'agujero de ozono'. Existen ciertas condiciones físicas necesarias para que este fenómeno se produzca y, además, se dé sobre la masa de hielo austral. Una fundamental es la presencia del vórtice polar antártico, que rodea el continente y aísla casi por completo la masa de aire interior de la exterior.

Este aislamiento permite que se alcancen las bajas temperaturas necesarias para que se produzcan una serie de reacciones químicas que desembocan en la destrucción masiva del ozono. El nuevo método matemático permite conocer mejor la estructura dinámica de este gigantesco torbellino.

[Img #8869]
En concreto, el trabajo desvela las rutas de transporte de partículas en el área y muestra cómo se produce una mezcla, aunque pequeña, entre el aire del interior y el del exterior del vórtice polar. Fuera del vórtice el aire es rico en ozono, y pobre en el interior.

El nuevo método ayuda por tanto a entender los procesos de intercambio de aire dentro y fuera de esta gran borrasca, y añade precisión a lo que se sabe sobre el papel del vórtice polar y su relación con el agujero de ozono. También aclara los mecanismos de transporte de masas de aire durante el proceso de debilitamiento del vórtice cada primavera austral, que influyen en la recuperación de los valores de ozono.

“Las técnicas matemáticas utilizadas hasta ahora no eran capaces de detectar con precisión este intercambio de partículas que se da entre el interior y el exterior del vórtice polar –señala Ana María Mancho, investigadora del ICMAT y autora de la técnica matemática utilizada en este trabajo–. Nosotros demostramos que, aunque este cinturón de vientos sigue siendo una barrera robusta, las partículas la pueden atravesar y, además, describimos cómo la atraviesan”.

“Tradicionalmente el transporte de partículas se ha estudiado calculando sólo las trayectorias de las masas de aire –explica Álvaro de la Cámara, primer autor de este trabajo que forma parte de su tesis doctoral–. Nosotros hemos proporcionado la descripción de su estructura dinámica, lo que nos ayudará a entender mejor los mecanismos físicos que subyacen a este fenómeno”.

Los investigadores han podido confirmar ya la validez del método con datos experimentales. “Hemos encontrado relación entre nuestros resultados y las trazas de ozono en el interior del vórtice polar. También hemos podido determinar la trayectoria de los globos que se han soltado a la atmósfera para tener más datos sobre el comportamiento de ésta. Esto nos ha permitido corroborar que la técnica funciona, porque coincide con toda la información que se tiene de los globos”, ha explicado Álvaro de la Cámara. (Foto: ICMAT)


Copyright © 1996-2017 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.
Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Todos los textos y gráficos son propiedad de sus autores. Prohibida la reproducción total o parcial por cualquier medio sin consentimiento previo por escrito.
Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Amazings® / NCYT® • Términos de usoPolítica de PrivacidadMapa del sitio
© 2017 • Todos los derechos reservados - Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Powered by FolioePress