Aviso sobre el Uso de cookies: Utilizamos cookies propias y de terceros para mejorar la experiencia del lector y ofrecer contenidos de interés. Si continúa navegando entendemos que usted acepta nuestra política de cookies. Ver nuestra Política de Privacidad y Cookies
Lunes, 1 abril 2013
Computación

Memorresistores, ¿sinapsis artificiales para una computadora capaz de pensar como un cerebro viviente?

Los científicos llevan mucho tiempo soñando con construir una supercomputadora que funcione como un cerebro. Ello se debe a que un cerebro puede aprender por sí mismo, no necesita programación alguna, y consume una cantidad de energía muy inferior a la gastada por un ordenador.

Andy Thomas, de la Facultad de Física de la Universidad de Bielefeld, en Alemania, está experimentando con memorresistores. Estos son microcomponentes electrónicos que imitan a los nervios naturales. Thomas y sus colegas construyeron un año atrás un memorresistor capaz de aprender, en relación a las características de un impulso eléctrico. Thomas ahora está usando sus memorresistores como componentes clave del diseño de un cerebro artificial.

Los memorresistores están hechos de capas de materiales con un grosor nanométrico y pueden ser utilizados para conectar circuitos eléctricos. Al memorresistor se le considera cada vez más como el mejor equivalente electrónico de una sinapsis. Las sinapsis son, por así decirlo, los cables que conectan a unas neuronas con otras. Cuanto más se usa una conexión, más se fortalece.

Al igual que las sinapsis, los memorresistores aprenden a partir de impulsos anteriores. En su caso, estas señales son impulsos eléctricos que (todavía) no provienen de células nerviosas, sino de los circuitos eléctricos a los que están conectados. La cantidad de corriente que un memorresistor permite pasar depende de cuán fuerte fue la corriente que circuló anteriormente a través de él y de cuánto tiempo estuvo expuesto a ella.

[Img #12797]
Debido a su similitud con las sinapsis, los memorresistores son especialmente adecuados para la construcción de un cerebro artificial, una computadora con la misma arquitectura lógica de un cerebro viviente, lo que abriría una nueva y fascinante era en la computación y acaso volvería confusa la frontera entre la psique de un ser viviente y el pensamiento artificial.

En el aspecto práctico, un cerebro artificial sería una supercomputadora capaz de aprender sola.

Basándose en sus propios experimentos y en resultados de otras investigaciones en el campo de la biología y en el de la física, Thomas ha confeccionado un sumario de los principios tomados de la naturaleza que conviene transferir a sistemas tecnológicos para lograr que sea funcional esa computadora neuromórfica. (Se le llama neuromórfico a un ordenador hipotético que posea una arquitectura como la neuronal de un cerebro.) Uno de los requerimientos principales es que los memorresistores, al igual que las sinapsis, tienen que "recordar" impulsos anteriores. Otra propiedad destacada es que las neuronas reaccionan a un impulso sólo cuando éste supera cierto umbral.

Gracias a estas y otras características, es factible usar las sinapsis artificiales para reconstruir el proceso cerebral responsable del aprendizaje, en opinión de Thomas. Él expone como ejemplo el experimento psicológico clásico con el perro de Pavlov. Este experimento muestra cómo una reacción natural determinada se puede asociar con un estímulo que inicialmente es neutral pero que al presentarse siempre acompañado del estímulo que provoca la reacción, también acaba provocándola por sí solo; éste es el mecanismo que permite el aprendizaje. Si el perro ve comida, reacciona produciendo saliva. Si el perro escucha sonar una campana cada vez que ve comida, llegará un día en que el perro también producirá saliva cuando oiga sonar la campana, aunque no tenga comida a la vista. El mecanismo que permite esta asociación se reduce en última instancia a conexiones sinápticas entre neuronas.

Un circuito para lograr algo parecido se puede fabricar con memorresistores, y ese es el primer paso hacia un procesador neuromórfico, en opinión de Thomas.

Él argumenta que todo esto es posible gracias a que un memorresistor puede almacenar información con mayor precisión que los bits en los que se han basado los procesadores convencionales. Tanto un memorresistor como un bit trabajan con impulsos eléctricos. Sin embargo, un bit no admite pequeños ajustes; sólo puede estar en "1" o en "0". En cambio, un memorresistor puede aumentar o disminuir su resistencia de forma continua. "Así es cómo los memorresistores aportan una base para el aprendizaje y el olvido graduales en un cerebro artificial", dictamina Thomas.

Información adicional



Copyright © 1996-2015 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.
Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Todos los textos y gráficos son propiedad de sus autores. Prohibida la reproducción total o parcial por cualquier medio sin consentimiento previo por escrito.
Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Amazings® / NCYT® • Términos de usoPolítica de PrivacidadMapa del sitio
© 2017 • Todos los derechos reservados - Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Powered by FolioePress