Aviso sobre el Uso de cookies: Utilizamos cookies propias y de terceros para mejorar la experiencia del lector y ofrecer contenidos de interés. Si continúa navegando entendemos que usted acepta nuestra política de cookies. Ver nuestra Política de Privacidad y Cookies
Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respetuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Lunes, 13 mayo 2013
Física

Una nueva técnica mide objetos atómicos delicados sin destruirlos

Comprender el cerebro humano, conocer el origen del universo con la detección de ondas gravitacionales y optimizar la precisión de los sistemas GPS son retos que requieren observar elementos muy frágiles que suelen dañarse durante el proceso de observación. Sin embargo, ahora la física cuántica ofrece una solución a este problema.

En un artículo publicado en Nature Photonics, científicos del Instituto de Ciencias Fotónicas (ICFO) han probado la medición de un cuerpo frágil y volátil con una nueva técnica basada en las propiedades de la mecánica cuántica.

Los investigadores del grupo, liderado por Morgan Mitchell, han aplicado la técnica de medición cuántica no destructiva a una pequeña nube de átomos. Con ello fueron capaces de observar el giro de los electrones en los átomos sin modificar las propiedades de la nube de átomos durante el proceso. Es la primera vez que esta medición cuántica no destructiva se ha podido realizar con un objeto material. Este método puede permitir la observación de átomos individuales.

En el experimento, los científicos han preparado pulsos de luz con fotones en estados complementarios y los han enviado a través de la nube de átomos en dos fases distintas, midiendo sus polarizaciones respectivas en la salida.

[Img #13499]“La primera medida nos da la información de la acción del primer pulso de luz. La segunda, realizada con fotones en un estado complementario, anula la influencia del primer impulso y nos permite observar las características originales del objeto", explica el Dr. Robert Sewell, investigador del ICFO. Esta técnica les ha permitido obtener información precisa sobre el campo magnético del entorno de los átomos.

Los resultados obtenidos superan el llamado límite cuántico, que predice la cantidad máxima de información que se puede obtener con una medida tradicional. La superación de este límite ha sido posible gracias a dos factores. Por un lado, los investigadores han sido capaces de estructurar la observación de modo que el ruido asociado a la medición lo han podido desplazar a una variable diferente de la que se está observando.

Además, también han sido capaces de introducir correlaciones cuánticas entre los átomos. De esta forma, con una sola medición han podido obtener la misma información que antes requería diferentes observaciones. "Este experimento supone una rigurosa prueba de la eficacia de la física cuántica para medir objetos delicados y abre la puerta a ampliar el conocimiento humano en muchas facetas", concluye Sewell. (Fuente: ICFO)



Copyright © 1996-2017 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.
Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Todos los textos y gráficos son propiedad de sus autores. Prohibida la reproducción total o parcial por cualquier medio sin consentimiento previo por escrito.
Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Amazings® / NCYT® • Términos de usoPolítica de PrivacidadMapa del sitio
© 2017 • Todos los derechos reservados - Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.
Powered by FolioePress