Lunes, 01 de Diciembre de 2025

Actualizada Lunes, 01 de Diciembre de 2025 a las 13:37:20 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Viernes, 23 de Junio de 2017
Heliofísica

Resuelto el misterio de las espículas del Sol

Las espículas son chorros de plasma de la atmósfera solar lanzados a velocidades de 100 km por segundo. Se producen miles de veces al día y hace más de un siglo que se conocen, pero hasta la fecha no se sabía cómo y por qué se forman.

 

La solución al misterio llega ahora de la mano de un equipo internacional de investigadores, liderados por el español Juan Martínez-Sykora, del Lockheed Martin’s Solar and Astrophysics Laboratory ((LMSAL, en California, EE UU).

 

“Básicamente, las espículas se producen por una cadena de eventos”, explica a Sinc Martínez-Sykora, que lo resume así: “Lo que detona el proceso es la ‘liberación’ de la tensión del campo magnético en la parte baja de la atmósfera solar (la cromosfera), una tensión que se genera en las proximidades de la superficie del Sol por los movimientos aleatorios de ebullición”.

 

“Después –continúa–, la presencia de partículas neutras (sin carga) facilitan que el campo magnético que contiene esa tensión atraviese la superficie solar. Además, la interacción entre partículas cargadas y neutras desempeña también otro papel fundamental, ya que ayuda a liberar la tensión como si de un latigazo se tratase”.

 

Para descubrir este mecanismo de formación de las espículas, los investigadores utilizaron modelos numéricos muy avanzados, con los que generaron simulaciones que produjeron numerosos de estos chorros de plasma de forma espontánea.

 

[Img #44633]

 

En el limbo o borde del Sol se observan multitud de espículas, que salen disparadas desde la superficie, según ha captado el satélite IRIS de la NASA. (Foto: NASA IRIS spectrograph)

 

Uno de sus hallazgos más notables es que los datos de las simulaciones coinciden con las observaciones de espículas reales captadas por el satélite espacial Interface Region Imaging Spectograph (IRIS) de la NASA y el Telescopio Solar Sueco del Observatorio del Roque de los Muchachos, situado en la isla canaria de La Palma.

 

“Las simulaciones contienen la física que creemos necesaria para explicar los fenómenos de la atmósfera solar –apunta Martínez-Sykora–. Es algo parecido a los modelos de predicción del tiempo, pero la gran diferencia es que la física (ecuaciones y matemáticas) que nosotros introducimos aquí es mucho más compleja. De hecho, los procesos que modelamos no se pueden reproducir en laboratorios de la Tierra, de ahí el interés que lleva combinar la observación y los modelos numéricos para entender el Sol”.

 

Con la unión de simulaciones y observaciones los investigadores lograron determinar las interacciones físicas entre los campos magnéticos y el plasma solar que acaban generando las espículas, un avance que también podría ayudar a los científicos a solucionar otro enigma: ¿Por qué las capas exteriores de la atmósfera del Sol están mucho más calientes (millones de grados centígrados, en la corona) que las interiores (unos cuantos miles de grados centígrados)?

 

“Debido al gran número de espículas que se producen de forma continuada en el Sol, son un candidato a tener en cuenta para proporcionar calor y viento solar a las capas más exteriores de la atmósfera solar”, señala el astrofísico español, aunque adelanta: “Pero explicar si esto deposita energía en la corona conllevará combinar nuestros resultados con otras investigaciones futuras”.

 

En el calentamiento de la corona y la producción del viento solar también se cree que intervienen de alguna forma unas ondas magnéticas denominadas ondas de Alfvén, y este estudio también aporta un mecanismo que las puede generar.

 

“En el caso de las ondas de sonido (como las olas del mar), la fuerza que las restaura es la presión, mientras que la que restaura las ondas de Alfvén es la llamada fuerza de Lorentz, que genera el propio campo magnético”, dice Martínez-Sykora .

 

“Ahora hemos visto que el mecanismo de formación de las ondas de Alfvén está fuertemente ligado con la creación de las espículas –añade–. Al liberarse la tensión magnética de la que hablamos se sacude el campo magnético de los alrededores produciendo estas ondas, que viajan a lo largo del campo magnético hacia la corona”. (Fuente: SINC)

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Quizás también te interese...

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.