Sábado, 04 de Octubre de 2025

Actualizada Viernes, 03 de Octubre de 2025 a las 13:55:59 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Miércoles, 09 de Julio de 2014
Física

Investigadores de la UAM crean un método para emitir luz con interacciones átomo-fotón

Científicos de la Universidad Autónoma de Madrid (España) han aprovechado las propiedades exóticas de la interacción entre luz y materia a escala microscópica para crear una nueva forma de emitir luz cuántica.

 

El método, publicado en la revista Nature Photonics, permite a los expertos agrupar y fijar a voluntad un número dado de fotones que pueden ser emitidos como si fueran un solo objeto.

 

A escala microscópica cada fotón se relaciona individualmente con un único átomo. Para potenciar esta interacción entre luz y materia, en los laboratorios de física actuales se llevan a cabo experimentos que consisten en encerrar un átomo (o incluso un átomo artificial, que se comporta de modo similar) entre dos espejos que confinan la luz. Esto da lugar a una rica estructura de niveles energéticos, de modo que el sistema en su conjunto transita absorbiendo y emitiendo luz con propiedades muy peculiares.

 

Los autores analizaron la luz que logra escapar de esta ‘cárcel de espejos’. Así pudieron determinar las condiciones para que, al ser excitado con un láser, el sistema completo pudiera emitir luz en paquetes de N-fotones, donde N es un número que se puede seleccionar simplemente cambiando la intensidad y la longitud de onda del láser.

 

El fenómeno puede tener múltiples aplicaciones prácticas. “Una de ellas sería en la microscopía de fluorescencia multifotónica, en la que la absorción y reemisión simultánea de múltiples fotones es utilizada para obtener imágenes de muestras biológicas reduciendo el daño en los tejidos, ya que se pueden utilizar fotones menos energéticos”, explica Carlos Sánchez Muñoz , investigador del Departamento de Física Teórica de la Materia Condensada de la UAM y primer firmante del trabajo.

 

“La iluminación con una fuente como ésta, que emite directamente fotones empaquetados, serviría para aumentar la probabilidad de que dichos eventos de absorción multifotónica se produzcan, además de mejorar la manipulación de los mismos”, agrega el investigador.

 

[Img #20924]

 

Representación de un sistema en el que se encierra un átomo entre dos espejos que confinan la luz. Al ser excitado con un láser, el sistema emite la luz a través de un número dado de fotones que puede fijarse a voluntad. (Foto: UAM)

 

El método desarrollado también abre la posibilidad de crear estados entrelazados de luz con múltiples fotones. El entrelazamiento es una particular propiedad del mundo cuántico por la cual dos o más partículas pueden compartir una función de onda, aún cuando se encuentren muy separadas entre sí.

 

“Esta propiedad es la responsable de generar extrañas acciones a distancia que no se pueden explicar sin la física cuántica”, sintetiza Sánchez Muñoz, y añade que los estados entrelazados son utilizados para sobrepasar el límite de precisión que impone la naturaleza cuántica de la luz:

 

“Cuando la luz se utiliza para hacer medidas de alta resolución en microscopía, existe un límite para el detalle que se puede alcanzar, debido al hecho de que la luz está formada por fotones individuales que siguen un comportamiento probabilístico. Sin embargo, si se utilizan estados con múltiples fotones que se encuentran entrelazados, se pueden obtener resultados que superan este límite de precisión. Esto también está relacionado con la posibilidad de utilizar esta luz para grabar con mayor precisión patrones en un substrato, lo que se conoce como litografía cuántica”.

 

En el trabajo también participaron Elena del Valle Reboul, Alejandro González Tudela, Carlos Tejedor y Fabrice P. Laussy, investigadores del Departamento de Física Teórica de la Materia Condensada de la UAM. (Fuente: UAM)

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.