Lunes, 17 de Noviembre de 2025

Actualizada Lunes, 17 de Noviembre de 2025 a las 11:02:41 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Martes, 11 de Noviembre de 2014
Computación

Nuevo método para que los ordenadores hagan descubrimientos científicos sin intervención humana

Unos investigadores del campo de la computación han ideado un método para estimar las similitudes entre flujos de datos, sin intervención humana. Este sistema de procesamiento de la información podría conducir a descubrimientos científicos automáticos, es decir hallazgos hechos por ordenadores y no por seres humanos, o al menos no directamente.

 

Un secreto poco conocido de la minería de datos es que es poco probable que se obtengan resultados útiles solamente suministrando datos en bruto a un algoritmo de análisis de datos.

 

Desde el reconocimiento del habla hasta la identificación de estrellas inusuales, los descubrimientos nuevos a menudo comienzan con la comparación de secuencias de datos a fin de encontrar conexiones y captar valores atípicos. Pero la mayoría de los algoritmos actuales de comparación de datos tienen un gran punto débil: En algún momento, un experto humano tiene que especificarles qué aspectos de los datos son relevantes para la comparación, y cuáles no. El problema es que la cantidad y la complejidad crecientes de los conjuntos masivos de datos, que los expertos etiquetan a menudo con la expresión inglesa “Big Data”, están superando la capacidad de revisión de los propios especialistas.

 

[Img #23429]

 

El método creado por Hod Lipson, de la Universidad Cornell en Ithaca, Nueva York, y por Ishanu Chattopadhyay, ahora en la Universidad de Chicago en Illinois, ambas instituciones en Estados Unidos, podría permitir analizar observaciones cada vez más complejas, especialmente cuando los expertos no saben qué buscar.

 

Lipson y Chattopadhyay han demostrado la aplicación de su método a datos de problemas del mundo real, incluyendo la desambiguación de patrones de electroencefalograma de pacientes con epilepsia, la detección de actividad cardiaca anómala en registros cardiacos, y la clasificación de objetos astronómicos a partir de datos en bruto de fotometría.

 

Información adicional

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.