Martes, 30 de Septiembre de 2025

Actualizada Martes, 30 de Septiembre de 2025 a las 15:38:56 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Martes, 23 de Mayo de 2017
Física

Emisión térmica a distancias atómicas

La nanotecnología es la disciplina que estudia y analiza las propiedades que tiene la materia en la nanoescala. Algunas de estas propiedades están muy bien caracterizadas, como la conducción eléctrica en sistemas nanoscópicos (formados incluso por sólo unos pocos átomos). Sin embargo, aunque se conoce que el fenómeno tiene un origen electromagnético, todavía no se ha medido con exactitud la cantidad de calor que intercambian dos objetos cuando se acercan a distancias nanométricas.

 

Hasta hace poco, no era posible medir experimentalmente este fenómeno ni tampoco estudiarlo computacionalmente en geometrías complejas, ya que no existían las herramientas necesarias para hacerlo.

 

En los últimos años, distintos grupos han realizado los primeros estudios experimentales sobre la emisión de calor en este régimen, obteniendo resultados contradictorios. De hecho, algunos investigadores han medido una emisión térmica entre dos superficies de oro que es hasta mil veces mayor que la predicha por la teoría básica del electromagnetismo. Por tanto, dentro de la disciplina es fundamental llevar a cabo nuevos trabajos que solucionen esta discrepancia y mejoren la comprensión de este fenómeno.   

 

Ahora, un equipo internacional, formado por físicos de la Universidad Autónoma de Madrid (UAM) (España) y la Universidad de Michigan (EE.UU.), ha llevado a cabo un estudio sobre la transferencia radiativa (electromagnética) de calor en la escala subnanométrica. Concretamente, han logrado medir la transferencia de calor entre una punta STM de oro y un sustrato del mismo material cuando la separación entre ambos era desde unos pocos Ångström hasta 5 nanómetros.

 

[Img #43912]

 

Diagrama de la punta de un microscopio térmico empleado para llevar a cabo las medidas del trabajo. (Foto: IFIMAC-UAM)

 

Los resultados, publicados en Nature Communications, muestran que, cuando se limpian sistemáticamente las superficies de oro, la emisión térmica pasa de ser extremadamente alta a tomar valores muy bajos, compatibles con los obtenidos mediante cálculos numéricos realizados en el marco de la teoría del electromagnetismo.

 

“El estudio sugiere por tanto que la transferencia extraordinaria encontrada en experimentos anteriores se debe a la presencia de contaminantes entre la punta y la muestra. Estas partículas podrían proporcionar un canal de conducción térmica que diera lugar a las señales tan altas medidas en trabajos anteriores”, señalan los investigadores.

 

Estas conclusiones son fundamentales para el desarrollo de nuevas técnicas capaces de medir la emisión térmica en escalas nanométricas. Además, el trabajo sienta las bases para el desarrollo de nuevas tecnologías basadas en la radiación térmica en la nanoescala, como el grabado magnético asistido por calor o la creación de células termo-fotovoltaicas que presenten mayor eficiencia.

 

Además de investigadores estadounidenses, el estudio lo firman los físicos Víctor Fernández-Hurtado, Johannes Feist, Francisco J. García-Vidal y Juan Carlos Cuevas, del Centro de Investigación de Física de la Materia Condensada (IFIMAC) de la UAM. (Fuente: UAM)

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.