Martes, 25 de Noviembre de 2025

Actualizada Lunes, 24 de Noviembre de 2025 a las 15:04:07 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Viernes, 12 de Enero de 2018
Biología

Un mecanismo clave para la función de los músculos y el corazón

Científicos del Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) (España) y de la Universidad de Columbia en Nueva York (EE UU) han descubierto un mecanismo clave para la regulación de una proteína esencial para la función de los músculos y el corazón.

 

El trabajo, que se publica hoy en Nature Communications y que ha sido coordinado por el investigador del CNIC Jorge Alegre-Cebollada, describe un nuevo mecanismo de regulación de la elasticidad de la proteína gigante titina.

 

(adsbygoogle = window.adsbygoogle || []).push({});

 

Titina, explica Alegre-Cebollada, es una proteína clave para el funcionamiento de nuestros músculos en general, y del corazón en particular. “Prueba de ello es que mutaciones en el gen de la titina son causa frecuente de miopatías y de miocardiopatías”, señala.

 

La titina es la proteína más grande presente en el ser humano y, por tanto, tiene multitud de funciones. Simplificando mucho, asegura el investigador, “podemos describirla como un ‘muelle molecular’, que permite que las células musculares se contraigan en sintonía”.

 

Sin embargo, no es un muelle sencillo y uno de los varios mecanismos físicos que determinan la elasticidad de titina es el desplegamiento de ciertas regiones de su estructura, llamadas dominios inmunoglobulina. Existen más de cien dominios en titina cuya acción concertada determina la elasticidad global de esta proteína.

 

Usando técnicas de bioinformática y de biología estructural, el equipo se percató de que estos dominios inmunoglobulina incluían un contenido elevado de un aminoácido muy especial, la cisteína. “En una proteína, cuando dos cisteínas están próximas, pueden dar lugar a un enlace químico entre ellas, denominado ‘puente disulfuro’”, señala Alegre-Cebollada.

 

Los investigadores vieron que muchos de los dominios inmunoglobulina de titina podían establecer estos puentes disulfuro y, además, que era posible que se produjera un intercambio dinámico de estos puentes disulfuro, denominado isomerización. “Lo más interesante es que la presencia e isomerización de estos puentes disulfuro predecían cambios drásticos en las propiedades elásticas de la titina”, revelan.

 

[Img #48306]

 

Alegre-Cebollada (centro) acompañado por Julio Fernández (izquierda) y Carmen Badilla (derecha), también autora del trabajo. (Foto: CNIC)

 

La formación de puentes disulfuro a partir de cisteínas forma parte de un conjunto más amplio de transformaciones bioquímicas denominadas de óxido-reducción (rédox). Desde hace décadas, se conoce que procesos patológicos como el infarto conducen a cambios drásticos en el ambiente rédox del miocardio.

 

Actualmente, el grupo de Alegre-Cebollada está investigando cómo la modificación del estado rédox de titina es utilizada por nuestro organismo como mecanismo de modulación de la actividad muscular y cardiaca, y como distintas enfermedades pueden interferir con la actividad mecánica de la proteína, resultando en pérdidas funcionales.

 

“Los hallazgos mecánicos que publicamos han sido posibles gracias a sistemas reconstituidos in vitro, de los cuales hemos aprendido mucho. El reto ahora es entender cómo estos principios básicos emergen en el ser vivo, que es lo que pretendemos mediante un enfoque multidisciplinar que incluye lo mejor de la fisiología, la biología, la física y la bioquímica”, concluye. (Fuente: CNIC)

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.