Lunes, 01 de Diciembre de 2025

Actualizada Lunes, 01 de Diciembre de 2025 a las 17:23:08 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Redacción
Viernes, 05 de Octubre de 2018
Computación

Un algoritmo simple para acelerar el procesamiento de la información cuántica

Un investigador del Departamento de Química Física de la UPV/EHU (España) ha estudiado la conexión de varios modelos matemáticos, que se creían muy diferentes, mediante un algoritmo matemático sencillo, con el fin de acelerar el procesamiento de la información cuántica. La prestigiosa revista internacional npj Quantum Information acaba de publicar los resultados de esta investigación.

 

La mecánica cuántica ha revolucionado el mundo de las comunicaciones y los ordenadores con la introducción de algoritmos mucho más veloces y seguros en la trasferencia de la información. “El modelo cuántico de Rabi es un modelo fundamental que aparece en muchos sistemas físicos, incluyendo plataformas cuánticas como iones atrapados o circuitos superconductores, que en un futuro más o menos cercano podrían utilizarse como hardware de un ordenador cuántico”, explica Jorge Casanova miembro del  grupo de investigación Quantum Technologies for Information Science (QUTIS) del Departamento de Química Física de la UPV/EHU y autor del trabajo. “Se trata del modelo matemático más sencillo que tenemos para describir los procesos de interacción entre la luz y la materia. Es decir, el modelo cuántico de Rabi es el mecanismo que la materia y la luz (la radiación) han elegido para comunicarse”, comenta el investigador de la UPV/EHU.

 

Este trabajo ha demostrado por primera vez que varios modelos matemáticos muy sofisticados que se usan para describir fenómenos físicos diferentes, se encuentran dentro del mismo modelo cuántico de Rabi. “Es como si el modelo cuántico de Rabi fuera la raíz de un conjunto mucho más avanzado de modelos matemáticos”, dice Casanova. “Esto significa que si uno interpreta los resultados que el modelo cuántico de Rabi predice, tendría acceso directo a las predicciones de otros modelos más complejos”, señala el investigador. Básicamente, “hemos conectado el modelo cuántico de Rabi con otros modelos matemáticos más sofisticados que se creían muy diferentes, todo esto mediante un algoritmo matemático, es decir, mediante una serie de reglas que, además, son bastante sencillas”, añade.

 

 

(Foto: UPV/EHU)

 

Por lo tanto, “una comprensión más profunda del mecanismo operacional del modelo cuántico de Rabi nos permitiría, por un lado, lidiar de manera más precisa con los problemas técnicos que tiene el desarrollo de un ordenador cuántico”, subraya el autor del trabajo.  Por otra parte, “dado que ahora tendríamos acceso de manera directa a otros modelos más allá del modelo cuántico de Rabi —comenta Casanova—, también tendríamos acceso directo a cambiar el mecanismo operacional más básico de las anteriormente citadas plataformas cuánticas, y por consiguiente de un futuro ordenador cuántico”.

 

Jorge Casanova señala que “más allá de las posibles aplicaciones prácticas que puedan derivarse y que sin duda son muy interesantes, como físico me parece increíble que un modelo tan sencillo siga escondiendo secretos como el que hemos encontrado”. “Es un avance inesperado, del que todavía tenemos que aprender y extraer toda la información posible para abrir nuevas vías de desarrollo en el campo de la computación cuántica”, añade el investigador de la UPV/EHU.

 

Jorge Casanova trabajó en la Universidad de Ulm (Alemania) y es actualmente investigador Juan de la Cierva en el Grupo QUTIS de la UPV/EHU. El Grupo QUTIS es líder mundial en simulación y computación cuántica, y ha realizado propuestas para implementaciones cuánticas que se han llevado a cabo por los mejores laboratorios del mundo. Colabora con investigadores de los cinco continentes, y trabaja en una variedad de plataformas cuánticas, como iones atrapados, circuitos superconductores, fotónica cuántica, y resonancia magnética nuclear. (Fuente: UPV/EHU)

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.