Sábado, 18 de Octubre de 2025

Actualizada Viernes, 17 de Octubre de 2025 a las 14:56:54 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Redacción
Miércoles, 03 de Julio de 2019
Física

Demuestran el acoplamiento de péndulos en la nanoescala

En 1665, Christiaan Huygens descubrió que dos relojes de péndulo, colgados de la misma estructura de madera, oscilaban de forma espontánea, en perfecta consonancia pero en direcciones opuestas, es decir, los relojes estaban sincronizados en antifase. Desde entonces, la sincronización de osciladores acoplados en la naturaleza se ha descrito en distintas escalas: desde las células del corazón a las bacterias, las redes neurales o, incluso, los sistemas binarios de estrellas se sincronizan de forma espontánea.


Los osciladores mecánicos son paradigmáticos de este tipo de sistemas. En la nanoescala, aunque ya se trabaja con osciladores, el reto es conseguir sincronizarlos. En esa línea, un artículo publicado en Physical Review Letters por un equipo de investigadores del Instituto de Nanociencia y Nanotecnología de la UB (IN2UB) junto con investigadores del ICN2 ha mostrado una versión de los osciladores mecánicos en la nanoescala. Mediante una serie de experimentos, los investigadores han conseguido sincronizar dos osciladores optomecánicos de cristales acoplados mecánicamente, situados en la misma plataforma de silicio y excitados mediante impulsos ópticos independientes. Estos osciladores nanométricos tienen un tamaño de 15 micrómetros por 500 nanómetros.


Mientras que un péndulo mecánico recibe impulsos del reloj para mantener el balanceo, los péndulos optomecánicos se automantienen gracias a la presión de la radiación, pero la interacción de los osciladores es equivalente en ambos experimentos. El trabajo también muestra que la dinámica colectiva se puede controlar actuando externamente sobre un solo oscilador.

 

[Img #56122]

Nanoosciladores. (Imagen: UB)


«Los resultados muestran una buena base para la creación de redes reconfigurables de osciladores optomecánicos gracias a estas dinámicas colectivas que están dominadas por un acoplamiento mecánico débil. Esto podría tener aplicaciones en computación fotónica, por ejemplo, para tareas de reconocimiento de patrones o para un procesamiento cognitivo más complejo», apunta Daniel Navarro Urrios, del IN2UB, quien ha liderado la investigación. (Fuente: UB)

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.