Martes, 09 de Septiembre de 2025

Actualizada Lunes, 08 de Septiembre de 2025 a las 10:49:48 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Redacción
Miércoles, 17 de Julio de 2019
Biología

Researchers wirelessly hack 'boss' gene, a step toward reprogramming the human genome

Noticia en inglés

It seems like everything is going wireless these days. That now includes efforts to reprogram the human genome.

 

A new University at Buffalo-led study describes how researchers wirelessly controlled FGFR1 -- a gene that plays a key role in how humans grow from embryos to adults -- in lab-grown brain tissue.

 

The ability to manipulate the gene, the study's authors say, could lead to new cancer treatments, and ways to prevent and treat mental disorders such as schizophrenia.

 

The work -- spearheaded by UB researchers Josep M. Jornet, Michal K. Stachowiak, Yongho Bae and Ewa K. Stachowiak -- was reported in the June edition of the Proceedings of the Institute of Electrical and Electronics Engineers.

 

It represents a step forward toward genetic manipulation technology that could upend the treatment of cancer, as well as the prevention and treatment of schizophrenia and other neurological illnesses. It centers on the creation of a new subfield of research the study's authors are calling "optogenomics," or controlling the human genome through laser light and nanotechnology.

 

"The potential of optogenomic interfaces is enormous," says co-author Josep M. Jornet, PhD, associate professor in the Department of Electrical Engineering in the UB School of Engineering and Applied Sciences. "It could drastically reduce the need for medicinal drugs and other therapies for certain illnesses. It could also change how humans interact with machines."

 

[Img #56309]

 

The left image above shows the gene FGFR1 in its natural state. The right image shows the gene when exposed to laser light, which causes the gene to activiate and deactivate. (Credit: University at Buffalo)

 

For the past 20 years, scientists have been combining optics and genetics -- the field of optogenetics -- with a goal of employing light to control how cells interact with each other.

 

By doing this, one could potentially develop new treatments for diseases by correcting the miscommunications that occur between cells. While promising, this research does not directly address malfunctions in genetic blueprints that guide human growth and underlie many diseases.

 

The new research begins to tackle this issue because FGFR1 -- it stands for Fibroblast Growth Factor Receptor 1 -- holds sway over roughly 4,500 other genes, about one-fifth of the human genome, as estimated by the Human Genome Project, says study co-author Michal K. Stachowiak.

 

"In some respects, it's like a boss gene," says Stachowiak, PhD, professor in the Department of Pathology and Anatomical Sciences in the Jacobs School of Medicine and Biomedical Sciences at UB. "By controlling FGFR1, one can theoretically prevent widespread gene dysregulations in schizophrenia or in breast cancer and other types of cancer."

 

The research team was able to manipulate FGFR1 by creating tiny photonic brain implants. These wireless devices include nano-lasers and nano-antennas and, in the future, nano-detectors.

 

Researchers inserted the implants into the brain tissue, which was grown from induced pluripotent stem cells and enhanced with light-activated molecular toggle switches. They then triggered different laser lights -- common blue laser, red laser and far-red laser -- onto the tissue.

 

The interaction allowed researchers to activate and deactivate FGFR1 and its associated cellular functions -- essentially hacking the gene. The work may eventually enable doctors to manipulate patients' genomic structure, providing a way to prevent and correct gene abnormalities, says Stachowiak, who also holds an appointment in UB's Department of Biomedical Engineering, a joint program between the Jacobs School and UB's engineering school.

 

The development is far from entering the doctor's office or hospital, but the research team is excited about next steps, which include testing in 3D "mini-brains" and cancerous tissue. Additional study authors include Pei Miao and Amit Sangwan of the UB Department of Electrical Engineering; Brandon Decker, Aesha Desai, Christopher Handelmann of the UB Department of Pathology and Anatomical Sciences; Liang Feng, PhD, of the University of Pennsylvania; and Anna Balcerak of the Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology in Poland. (Fuente: University at Buffalo)

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.