Lunes, 01 de Diciembre de 2025

Actualizada Lunes, 01 de Diciembre de 2025 a las 10:57:13 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Redacción
Lunes, 26 de Agosto de 2019
Ingeniería

Augmented reality glasses may help people with low vision better navigate their environment

Noticia en inglés

Nearly one in 30 Americans over the age of 40 experience low vision -- significant visual impairment that can't be corrected with glasses, contact lenses, medication or surgery.

 

In a new study of patients with retinitis pigmentosa, an inherited degenerative eye disease that results in poor vision, Keck School of Medicine of USC researchers found that adapted augmented reality (AR) glasses can improve patients' mobility by 50% and grasp performance by 70%.

 

"Current wearable low vision technologies using virtual reality are limited and can be difficult to use or require patients to undergo extensive training," said Mark Humayun, MD, PhD, director of the USC Dr. Allen and Charlotte Ginsburg Institute for Biomedical Therapeutics, codirector of the USC Roski Eye Institute and University Professor of Ophthalmology at the Keck School.

 

"Using a different approach -- employing assistive technology to enhance, not replace, natural senses -- our team adapted AR glasses that project bright colors onto patients' retinas, corresponding to nearby obstacles," Humayun said.

 

Patients with retinitis pigmentosa wore adapted AR glasses as they navigated through an obstacle course based on a U.S. Food and Drug Administration-validated functional test. Using video of each test, researchers recorded the number of times patients collided with obstacles, as well as the time taken to complete the course. Patients averaged 50% fewer collisions with the adapted AR glasses.

 

[Img #56745]

 

Graphic representation of what a patient sees when wearing an augmented reality low vision aid. (Credit: Scott Song for USC Roski Eye Institute)

 

Patients also were asked to grasp a wooden peg against a black background -- located behind four other wooden pegs -- without touching the front items. Patients demonstrated a 70% increase in grasp performance with the AR glasses.

 

"Patients with retinitis pigmentosa have decreased peripheral vision and trouble seeing in low light, which makes it difficult to identify obstacles and grasp objects. They often require mobility aids to navigate, especially in dark environments," said Anastasios N. Angelopoulos, study project lead in Humayun's research laboratory at the Keck School.

 

"Through the use of AR, we aim to improve the quality of life for low vision patients by increasing their confidence in performing basic tasks, ultimately allowing them to live more independent lives," Angelopoulos says.

 

The AR system overlays objects within a 6-foot wireframe with four bright, distinct colors. In doing so, the glasses provide visual color cues that help people with constricted peripheral vision interpret complex environments, such as avoiding obstacles in dimly lit environments.

 

To accomplish this, researchers used a process called simultaneous location and mapping, allowing the AR glasses to fully render the 3D structure of a room in real time. The glasses then translated this information into a semitransparent colored visual overlay, which highlighted potential obstacles with bright colors to help patients with spatial understanding and depth perception. This technology can work on commercially available devices.

 

According to Humayun, while major cost and technical issues remain, this type of assistive technology could eventually become more practical for everyday use in the near future. (Fuente: University of Southern California - Health Sciences)

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.