Lunes, 01 de Diciembre de 2025

Actualizada Lunes, 01 de Diciembre de 2025 a las 17:23:08 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Redacción
Lunes, 21 de Octubre de 2019
Computación

Investigadores emplean técnicas de Inteligencia Artificial para detectar 'fake news' en Twitter

El término fake news (noticias falsas) se ha popularizado en los últimos años, debido sobre todo al impacto que las campañas de desinformación en la red han tenido en diversos acontecimientos políticos y sociales, como el referéndum del Brexit o las elecciones generales en España de abril de 2019.

 

Los investigadores Miguel Molina Solana y Juan Gómez Romero, del departamento de Ciencias de la Computación de la Universidad de Granada (UGR), junto a varios colaboradores del Imperial College London, han presentado un estudio sobre el uso de Inteligencia Artificial para detectar estas noticias falsas en Twitter. El trabajo, publicado en la revista internacional IEEE Access, analiza matemáticamente qué características presentan los tuits que contienen información falsa, y propone un sistema informático para detección de fake news.

 

El enfoque de la investigación es diferente a las aproximaciones periodísticas habituales de fact checking, que requieren un ingente trabajo de verificación de datos y revisión de hemeroteca. Aunque la Inteligencia Artificial puede ayudar en esta tarea, Miguel Molina señala que “analizar el contenido de los tuits de forma automática es muy complicado, ya que requiere estudiar si el autor está simplemente siendo irónico o realmente está intentando hacer pasar una noticia falsa como verdadera”.

 

Por ello, en este trabajo los investigadores decidieron utilizar, aparte del contenido del tuit, los datos disponibles sobre el mismo y sobre su autor (esto es, los metadatos), como por ejemplo el número de seguidores en el momento de publicar, la fecha de registro en la red social o la cantidad de mayúsculas e iconos utilizados.

 

[Img #57433]

 

Redes sociales. (Imagen: UGR)

 

Según destaca Molina, “los experimentos han mostrado que los usuarios que distribuyen información falsa de manera intencionada tienen un comportamiento diferente a los normales”, y añade que “este comportamiento anómalo se manifiesta a través de propiedades fácilmente medibles, como el número de contactos o de tuits marcados como favoritos del autor”.

 

En consecuencia, estas características pueden usarse para ayudar en la identificación automática de noticias potencialmente falsas. La investigación también revela que las fake news suelen incluir información más polarizada, novedosa e impactante con el propósito de atraer la atención del lector.

 

El trabajo utiliza datos de Twitter sobre las elecciones presidenciales de 2016 en EE.UU. recopilados por los propios autores. Los hallazgos de la investigación han sido también presentados en la conferencia Truth and Trust Online (TTO), celebrada recientemente en Londres y organizada, entre otros, por Twitter, Facebook y la Universidad de Cambridge. (Fuente: UGR/DICYT)

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.