Martes, 14 de Octubre de 2025

Actualizada Martes, 14 de Octubre de 2025 a las 11:49:22 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Redacción
Viernes, 10 de Enero de 2020
Astrofísica

Stellar heavy metals can trace history of galaxies

Noticia en inglés

Astronomers have cataloged signs of 9 heavy metals in the infrared light from supergiant and giant stars. New observations based on this catalog will help researchers to understand how events like binary neutron star mergers have affected the chemical composition and evolution of our own Milky Way Galaxy and other galaxies.

 

Right after the Big Bang, the Universe contained only hydrogen and helium. Other elements were formed later through nuclear fusion in stars or violent events like supernovae or binary neutron star mergers. However, the details of the various processes and their relative contributions are still poorly understood. Better understanding of the chemical evolution of galaxies is important to understand how the rich element environment of planets like Earth came to be. In particular, metals heavier than nickel can be used to trace violent events such as binary neutron star mergers.

 

A research team including members from the University of Tokyo, Kyoto Sangyo University, and NAOJ used the WINERED near-infrared spectrograph on the 1.3 m Araki Telescope at Koyama Astronomical Observatory in Kyoto Japan to look for signs of heavy metals in 13 supergiant and giant stars. Large, bright supergiant and giant stars are easy to observe, even far away; and infrared light has the advantage that it can still be observed in regions where interstellar matter blocks visible light.

 

[Img #58577]

 

Various heavy metals with unique wavelength signatures are produced in an explosion following a merger of binary neutron stars. These metals are then incorporated into newly forming stars where their signatures can be observed. (Credit: University of Tokyo, NAOJ)

 

Every element present in a star produces a distinct "signature" in the star's light by absorbing specific wavelengths of light. The team compared the spectrum, the detailed wavelength information, of each star to libraries containing dozens of theoretically predicted absorption lines and found that 23 lines produced by 9 elements ranging from zinc to dysprosium could actually be observed.

 

Based on these results, astronomers can now measure the levels of these heavy metals in other stars to map the chemical diversity and evolution of the Milky Way and other galaxies. (Fuente: National Institutes of Natural Sciences)

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Quizás también te interese...

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.