Jueves, 16 de Octubre de 2025

Actualizada Jueves, 16 de Octubre de 2025 a las 09:40:45 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Redacción
Jueves, 21 de Mayo de 2020
Astrobiología

La UVa ensaya con muestras del cráter de la bahía de Chesapeake (Estados Unidos) la detección de vida en Marte

El grupo ERICA (Espectroscopía Avanzada en Ciencias de la Tierra y Planetarias) de la Universidad de Valladolid (UVa) (España), coordinado por el catedrático Fernando Rull, está preparándose para el uso en Marte de la herramienta RLS (Raman Laser Spectrometer), el primer espectrómetro Raman en ser validado para misiones espaciales, que se utilizará para localizar restos de vida en el marco de ExoMars, la misión planetaria que la Agencia Espacial Europea (ESA) y la corporación espacial rusa Roscosmos lanzarán en 2022 hacia el planeta rojo.

 

El grupo de investigación, que lidera el desarrollo de la herramienta, ha analizado muestras semejantes a las que se podrán encontrar en Marte, procedentes de la bahía de Chesapeake (Estados Unidos), que forman parte de la colección de análogos de Marte en la Tierra del proyecto PTAL y han obtenido unos resultados muy prometedores.

 

La bahía de Chesapeake preserva uno de los pocos cráteres terrestres producidos por el impacto de un bólido en una superficie cubierta por agua. Esto lo convierte en un análogo terrestre de Marte, ya que la superficie del planeta rojo se caracteriza por la presencia de numerosos cráteres similares. Y, por ende, el lugar ideal para probar las capacidades del RLS en la identificación de compuestos minerales que indicarían la presencia de vida.

 

Marco Veneranda, investigador del grupo ERICA y miembro del equipo RLS, recuerda que “al comparar las estructuras de impacto marcianas con el cráter de la bahía de Chesapeake se descubrió que algunas podrían haberse producido por el impacto de un meteorito contra una superficie cubierta por agua”. Teniendo en cuenta que calor y agua son los componentes principales para la proliferación de microorganismos, estos cráteres representarían “uno de los lugares más prometedores para la búsqueda de vida en Marte”, principal objetivo de la misión ExoMars.

 

[Img #60384]

 

Los investigadores del grupo ERICA estudian uns muestra análoga de Marte en la Tierra mediante la herramienta RLS (Raman Laser Spectrometer). (Foto: M. Veneranda)

 

“La presencia de agua, junto con el calor generado por el impacto, hace que las rocas localizadas en el centro del cráter sufran procesos de metamorfosis y alteración hidrotermal. La detección de los productos de alteración tiene un alto valor científico ya que ayudan a reconstruir las dinámicas del impacto y la evolución geológica del lugar”, precisa el científico.

 

Para probar en la Tierra la herramienta RLS que viajará a Marte, el equipo ha desarrollado el RLS ExoMars Simulator. Este instrumento “permite reproducir en la Tierra análisis cualitativamente comparables” y por ello “tiene una importancia clave para prepararse ante los desafíos de la futura misión marciana”, asegura Veneranda.

 

Los resultados obtenidos del análisis de las muestras procedentes del cráter de Chesapeake (Estados Unidos) mediante Raman han sido muy prometedores. Frente a otras técnicas que ya operan y operarán en Marte, el RLS ExoMars Simulator ha permitido identificar numerosos compuestos minerales minoritarios y productos de alteración que no fueron detectados por técnicas complementarias. Un dato alentador, ya que “los minerales presentes en pequeñas concentraciones son los que, a menudo, proporcionan valiosas informaciones sobre la posible presencia de vida”, subraya el investigador del ERICA.

 

En concreto, la herramienta fue capaz de detectar siderita (FeCO3) y barita (BaSO4), que de localizarse en Marte proporcionarían “la evidencia espectroscópica que confirmaría la ocurrencia de procesos de alteración hidrotermal”. La detección de este tipo de compuestos en un cráter marciano ayudaría así “a confirmar la presencia de agua al momento del impacto, lo que convertiría a ese lugar en un objetivo científico extremadamente interesante para estudios astrobiológicos”. (Fuente: DICYT)

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Quizás también te interese...

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.