Lunes, 01 de Diciembre de 2025

Actualizada Lunes, 01 de Diciembre de 2025 a las 13:37:20 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Redacción
Miércoles, 27 de Mayo de 2020
Computación

Deep learning para combatir la propagación de bulos en Internet

Existen usuarios de Internet que se amparan en el anonimato y en la deslocalización de la red para propagar la desinformación y el miedo. Plataformas como Twitter o Facebook tienen problemas para luchar contra la propagación de estas noticias, ya que una vez detectan y cancelan una cuenta dedicada a la propagación de bulos, sus usuarios tardan pocos minutos en crear otra.

 

En este contexto, un trabajo desarrollado por la Universidad Autónoma de Madrid (UAM) (España) y la Naval Postgraduate School (US Navy) de Monterrey, California, demuestra que la dinámica de tecleo se puede utilizar para identificar múltiples cuentas gestionadas por un mismo usuario.

 

En concreto, la colaboración entre las dos universidades ha permitido desarrollar un modelo entrenado a partir de más de cuatro millones de muestras de más de 160 mil usuarios de Internet, capaz de identificar a un usuario a partir de la forma en la que teclea menos de 15 palabras.

 

Según los investigadores, “el sistema es capaz de extraer patrones asociados a la forma de teclear de cada persona, independientemente del texto que teclee. Cada vez que tecleamos una palabra, esos patrones pueden ser analizados y cotejados de forma similar a una huella dactilar”.

 

“Las diferentes publicaciones de una misma cuenta —agregan— se usan para crear un perfil biométrico de cada usuario. Las pruebas realizadas demuestran que es posible identificar a usuarios con elevados porcentajes de acierto que superan el 50%, lo que significaría potencialmente detectar 1 de cada 2 cuentas dedicadas a la propagación de bulos en internet”.

 

[Img #60478]

 

Ejemplo de 37 características temporales extraídas del término COVID 19. (Foto: UAM)

 

En el trabajo participa el Biometrics and Data Pattern Analytics Lab de la Escuela Politécnica Superior de la UAM, dirigido por los profesores Javier Ortega y Julián Fiérrez. La colaboración se inicia en septiembre, cuando el estudiante de doctorado Alejandro Acién Ayala realiza una estancia de investigación en el laboratorio de Vincent Monaco, en US Navy.

 

Durante esta estancia, se estudiaron nuevos algoritmos de aprendizaje profundo (deep learning) capaces de modelar las características neuromotoras inherentes a cada individuo asociadas a la dinámica de tecleo.

 

Durante los últimos dos meses, en un proyecto coordinado por el profesor Aythami Morales, los investigadores de ambos laboratorios han trabajado en adaptar dicha tecnología para la lucha contra la desinformación y las fake news relacionadas con COVID-19.

 

Su propuesta es utilizar este sistema de identificación biométrica para bloquear a usuarios y cuentas dedicadas a la propagación de las noticias falsas, ya que una vez el usuario es expulsado por difundir bulos, el sistema permite identificarlo, aunque genere una nueva cuenta basada en una identidad falsa.

 

“La libertad de expresión es un derecho fundamental de los ciudadanos. Es importante resaltar que la investigación hace hincapié en la necesidad de utilizar este tipo de tecnologías bajo estrictas normas de supervisión y control”, detallan los autores.

 

“El estudio se centra en la parte técnica y en mostrar el potencial de estas tecnologías. La definición de una noticia como bulo o no, o la idoneidad de cerrar o no una cuenta, les corresponde a terceros. La privacidad y seguridad de los usuarios es un objetivo fundamental de los autores del proyecto”, concluyen.

 

El trabajo, en el que también participan los investigadores Julián Fierrez, Javier Ortega-García, Rubén Vera y Rubén Tolosana, se presentará este julio en una conferencia centrada en seguridad, organizada por la prestigiosa Asociación de Ingeniería IEEE. (Fuente: UAM)

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Quizás también te interese...

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.