Lunes, 01 de Diciembre de 2025

Actualizada Lunes, 01 de Diciembre de 2025 a las 17:23:08 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Redacción
Viernes, 07 de Mayo de 2021
Ciencia de los materiales

Materiales magnetointeligentes para músculos artificiales y robots terapéuticos

Desarrollar una nueva generación de músculos artificiales y nanorrobots para la administración dirigida de medicamentos son algunos de los objetivos a largo plazo de 4D-BIOMAP, un proyecto de investigación que desarrolla metodologías de conocimiento transversal biomagnetomecánico para simular y gobernar procesos como la migración y proliferación celular, la respuesta electrofisiológica del organismo y el origen y desarrollo de patologías en tejidos blandos.

 

El proyecto está impulsado por la Universidad Carlos III de Madrid (UC3M) en España.

 

“La idea global de este proyecto de investigación es llegar a influir a nivel celular sobre distintos procesos biológicos (como la cicatrización de las heridas, las sinapsis cerebrales o las respuestas del sistema nervioso), lo que permitirá desarrollar determinadas aplicaciones ingenieriles que nos permitan controlar los mismos”, explica el responsable de 4D-BIOMAP, Daniel García González, del Departamento de Mecánica de Medios Continuos y Teoría de Estructuras de la UC3M.

 

Los polímeros magnetoactivos, como se denominan, están revolucionando los campos de la mecánica de sólidos y de la ciencia de los materiales. Estos compuestos consisten en una matriz polimérica (un elastómero) que contiene partículas magnéticas (de hierro, por ejemplo) que reaccionan mecánicamente y cambian de forma y volumen. “La idea es que con un campo magnético externo se inducen fuerzas internas en este material de manera que se modifican las propiedades mecánicas, como la rigidez, o incluso se producen cambios en la forma y el volumen que pueden interactuar con ciertos sistemas celulares”, explica Daniel García González. Este investigador ha publicado recientemente un estudio científico en la revista Composites Part B: Engineering sobre este tema junto con colegas del Departamento de Estructuras y del Departamento de Bioingeniería e Ingeniería Aeroespacial de la UC3M, en una colaboración transversal en la que proponen un modelo que proporciona una guía teórica para sistemas estructurales magnetoactivos que se podrían aplicar para estimular la cicatrización de heridas epiteliales.

 

[Img #63834]

Las fuerzas de interacción entre partículas magnéticas que se traducen en transformaciones macroscópicas de los polímeros inteligentes. (Imagen: 4D-BIOMAP)

 

La respuesta magnetomecánica está determinada por las propiedades del material de la matriz polimérica y de las partículas magnéticas. Si se consigue controlar estos procesos, se podrían desarrollar otras aplicaciones ingenieriles, como robots blandos que podrían interaccionar con el cuerpo o una nueva generación de músculos artificiales, señala el investigador, quien recurre a un símil para explicar el potencial de esta tecnología: “Nos imaginamos una persona que está en la playa y que quiere avanzar rápidamente. Sin embargo, la arena del suelo (el entorno mecánico) hace que le cueste un poco más avanzar que si estuviera sobre asfalto o sobre una pista de atletismo. Al igual que en nuestro caso, cuando una célula está sobre un sustrato demasiado blando, le va a costar más desplazarse. En cambio, si somos capaces de modificar estos sustratos y crear esta pista de atletismo para las células, vamos a conseguir que todos estos procesos se desarrollen de una forma mucho más eficiente”.

 

4D-BIOMAP (Biomechanical Stimulation based on 4D Printed Magneto-Active Polymer; Estimulación Biomecánica basada en Polímeros Magneto-Activos por impresión 4D) es un proyecto de cinco años de duración financiado con 1,5 millones de euros por el Consejo Europeo de Investigación (European Research Council) a través de una ayuda ERC Starting Grant del Programa Marco de Investigación e Innovación de la Unión Europea, Horizonte 2020 (GA 947723). Este proyecto de investigación se aborda desde una perspectiva multidisciplinar, involucrando conocimientos de disciplinas como la mecánica de sólidos, el magnetismo y la bioingeniería. Además, se combinarán metodologías computacionales, experimentales y teóricas. (Fuente: UC3M)

 

 

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Quizás también te interese...

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.