Miércoles, 26 de Noviembre de 2025

Actualizada Miércoles, 26 de Noviembre de 2025 a las 12:14:27 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Redacción
Miércoles, 14 de Julio de 2021
Energía solar

Nuevo método para obtener células solares más eficientes

No cesa la aparición de nuevas mejoras en el campo de los paneles solares y en especial en el de las células solares de perovskita. Sumándose a otros avances presentados en días recientes, un uso pionero de un compuesto llamado subftalocianina abre ahora una nueva vía para incrementar la eficiencia de esta nueva clase de células solares.

 

Un grupo de investigación del Instituto de Tecnología Química (ITQ), centro de excelencia Severo Ochoa del Consejo Superior de Investigaciones Científicas (CSIC) y la Universitat Politècnica de València (UPV), todas estas entidades en España, ha desarrollado un nuevo método que permite obtener perovskitas más estables y mejorar su eficiencia. Las perovskitas son una familia de materiales cuya aplicación en la fabricación de células solares ha revolucionado la tecnología fotovoltaica. Este nuevo método logra introducir un compuesto orgánico que favorece el aprovechamiento de la radiación solar. Además, se puede emplear para introducir otros compuestos que podrían mejorar sus propiedades y aumentar la cantidad de aplicaciones de estos materiales.

 

Las perovskitas toman su nombre del mineralogista ruso Lev Perovski. Se encuentran en la naturaleza y también se pueden obtener en laboratorio. Estos materiales han revolucionado la fabricación de células (o celdas) solares ya que, en un periodo de tiempo muy corto, han alcanzado una eficiencia que compite con la tecnología actual, basada en el silicio. Las perovskitas halogenadas contienen un halógeno como bromo o yodo en su estructura, el proceso de producción es relativamente simple, el material es barato y está disponible en grandes cantidades. Además, las células solares se pueden hacer sobre sustratos flexibles.

 

“No obstante, estos materiales presentan algunas limitaciones, aunque la principal a solventar sería la estabilidad”, asegura Pedro Atienzar, científico titular del CSIC en el ITQ. “Hemos desarrollado una metodología que permitiría seleccionar aquellas perovskitas más estables y al mismo tiempo mejorar su eficiencia”, asegura. Para ello, han introducido con éxito un compuesto orgánico, llamado subftalocianina, dentro de la estructura de la perovskita. Este compuesto actúa favoreciendo el aprovechamiento de la luz visible de la radiación solar, mejorando la eficiencia de la perovskita.

 

[Img #64363]

El equipo del ITQ ha introducido un compuesto que favorece el aprovechamiento de la luz de la radiación solar. (Foto: ITQ-CSIC)

 

El grupo multidisciplinar de investigación del ITQ formado por Pedro Atienzar, Sonia Remiro, Hermenegildo García y Rocío García, ha obtenido una perovskita multidimensional (2D-3D) que permite la incorporación de la molécula huésped de subftalocianina entre las láminas de la estructura cristalina, confiriéndole al material nuevas propiedades. Como resultado, se consigue aumentar la fotorrespuesta de las celdas solares, es decir, se logra un mayor aprovechamiento de la luz solar. De hecho, el nanomaterial desarrollado ha sido implementado con éxito en dispositivos fotovoltaicos, aumentando la absorción de luz solar hacia la región visible del espectro.

 

 “Al tratarse de una propuesta novedosa, se abre una nueva ruta a explorar que ofrece posibilidades ilimitadas para mejorar la eficiencia de las celdas solares fabricadas con perovskitas. Eso nos impulsa a continuar nuestra investigación, con especial énfasis en el efecto que ejercen los distintos grupos funcionales de la molécula orgánica huésped en la absorción de luz y en la fotorrespuesta”, afirma Sonia Remiro Buenamañana, investigadora del ITQ.

 

“Se trata de una metodología sencilla, que además de mejorar la eficiencia y estabilidad en las perovskitas se puede emplear para introducir otros compuestos que podrían, no solo mejorar sus propiedades, sino también aumentar la cantidad de aplicaciones de estos materiales”, resume Atienzar. Así, además de su aplicación en el campo de las celdas solares, este método puede ampliar las aplicaciones de las perovskitas en el desarrollo de dispositivos LEDs o sensores, entre otros.

 

Los resultados del estudio han sido publicados en la revista académica Dalton Transactions de la Real Sociedad de Química de Reino Unido, con el título “Expanding the photoresponse of multidimensional hybrid lead bromide perovskites into the visible region by incorporation of subphthalocyanine”. Además, han sido destacados en la contraportada de la revista con motivo de su 50 aniversario. (Fuente: CSIC Comunitat Valenciana)

 

 

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Quizás también te interese...

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.