Domingo, 21 de Septiembre de 2025

Actualizada Viernes, 19 de Septiembre de 2025 a las 19:19:31 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Redacción
Jueves, 27 de Enero de 2022
Meteorología espacial

La inteligencia artificial aprende a predecir el flujo solar

Unos científicos han desarrollado una nueva metodología que utiliza el aprendizaje profundo (una modalidad de inteligencia artificial) para pronosticar el flujo de radiación solar, en concreto, el índice F10.7, en un horizonte temporal de días, lo que resulta muy relevante a la hora de diseñar y planificar operaciones espaciales.

 

El trabajo es obra de Emma Stevenson, Víctor Rodríguez-Fernández y David Camacho, de la Universidad Politécnica de Madrid (UPM) en España, así como Edmondo Minisci, de la Universidad de Strathclyde en el Reino Unido.

 

El índice F10.7 es una medida de la intensidad de las emisiones de radiación solar ultravioleta con una longitud de onda de 10,7 cm y se utiliza como un indicador de la actividad solar, siendo uno de los principales responsables de los cambios de la densidad atmosférica, y por lo tanto, del arrastre atmosférico. Dado que el arrastre atmosférico es una de las fuentes de incertidumbre más destacadas en la predicción de la órbita de los satélites en la órbita terrestre baja (LEO, por sus siglas en inglés), la modelización precisa de este índice es de gran importancia para ayudar a predecir las posiciones de los satélites y la basura espacial, así como para asegurar que no se produzcan colisiones.

 

La metodología seguida por el grupo de investigación de la UPM para el desarrollo de este modelo se basa en el uso de métodos de aprendizaje profundo, deep learning, más concretamente, en un nuevo enfoque basado en Redes Residuales Profundas. Este método, basado en la arquitectura de redes neuronales N-BEATS, ha resultado ser eficaz en la predicción de valores puntuales hasta 27 días en el futuro, así como en la estimación de la incertidumbre en la predicción utilizando un conjunto de modelos.

 

El equipo de investigación ha comprobado también que el modelo N-BEATS mejora los resultados de dos modelos de predicción disponibles para operadores espaciales: uno estadístico (proporcionado por BGS, ESA), y otro de una red neuronal más simple que utiliza información del flujo solar en múltiples longitudes de onda (por CLS, CNES).

 

[Img #65620]

En esta fotografía del Sol, tomada en luz visible, se aprecian algunas manchas solares. (Foto: NASA's Scientific Visualization Studio / SDO Science Team / Virtual Solar Observatory)

 

En opinión de los investigadores de la UPM: “Con un número creciente de empresas privadas que ofrecen servicios en el espacio, los resultados de este estudio son importantes para la industria espacial, ya que pueden utilizarse para desarrollar herramientas que permitan prever las condiciones de arrastre en un futuro próximo y hacer predicciones de órbita más precisas”.

 

El estudio se ha publicado en la revista académica Acta Astronautica, bajo el título “A deep learning approach to solar radio flux forecasting”. (Fuente: UPM)

 

 

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.