Martes, 16 de Diciembre de 2025

Actualizada Martes, 16 de Diciembre de 2025 a las 09:11:21 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Redacción
Viernes, 13 de Mayo de 2022
Tecnología agrícola

La robótica y la inteligencia artificial mejoran la producción de cultivos orgánicos

Los desarrollos en inteligencia artificial y robótica llevados a cabo por unos investigadores han mejorado los procesos de fertilización en hileras de cultivo a través de la identificación de vegetales y de la aplicación de tratamientos específicos.

 

Estos investigadores, de la Universidad Politécnica de Madrid (UPM) en España, han desarrollado un nuevo método que permite identificar y caracterizar vegetales dentro de cultivos en hileras para llevar a cabo procesos de fertilización orgánica utilizando una plataforma robotizada equipada con sensores (cámaras y láser) y un brazo robótico. Los diferentes componentes del método implementado permiten actuar con cada planta, a nivel individual y considerando tamaños específicos, para dosificar fertilizante orgánico líquido. El método propuesto está basado en una red neuronal entrenada que ha demostrado tener una precisión de más del 90%, y porcentajes de error inferiores al 3%, para reconocer especies vegetales.

 

El equipo de investigadores que ha llevado a cabo el trabajo está integrado por especialistas del grupo de investigación LPF-TAGRALIA de la Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB) de la UPM, y por especialistas del grupo de Robótica y Cibernética (ROBCIB) del Centro de Automática y Robótica (CAR), dependiente de la UPM y del Consejo Superior de Investigaciones Científicas (CSIC) en España. El desarrollo llevado a cabo por el equipo forma parte del proyecto SureVeg (Strip-cropping and recycling of waste for biodiverse and resoURce-Efficient intensive VEGetable production) que busca implementar soluciones tecnológicas para mejorar los procesos de cultivo en hileras.

 

El principal objetivo del trabajo llevado a cabo por el equipo de Christyan Cruz Ulloa (especialista del CAR) se ha centrado en analizar las necesidades específicas de cada vegetal a nivel de planta individual, para la toma de decisiones sobre la aplicación de tratamientos con fertilizantes líquidos. Para ello se ha implementado un nuevo método basado en redes neuronales convolucionales, que toma las imágenes capturadas a partir de una cámara a bordo de la plataforma e identifica el tipo de vegetal, su ubicación dentro de la hilera de cultivo y sus dimensiones.

 

[Img #66237]

La plataforma robótica desarrollada entrenando en uno de los campos agrícolas de prácticas de la ETSIAAB-UPM. (Fotos: “Robotic Fertilization in Strip Cropping using a CNN Vegetables Detection-Characterization Method”. Computers and Electronics in Agriculture.)

 

El análisis de las necesidades para determinar qué planta requiere de fertilizante, consiste en cuantificar el parámetro NDVI (índice de vegetación de diferencia normalizada) obtenido a través de imágenes multiespectrales. Este tipo de imágenes captan rangos de longitud de onda imperceptibles para el ojo humano, pero que aportan información valiosa para este tipo de aplicaciones.

 

Una vez procesada la información sensorial, el resultado es el vegetal identificado y sus dimensiones, así como también la indicación de si se debe o no aplicar el fertilizante. Esta información es enviada a los sistemas de planificación de movimientos del robot para la generación de trayectorias libres de colisión.

 

“El método implementado ha demostrado una alta eficacia en la detección de vegetales”, comentan los investigadores. Los resultados obtenidos muestran que la red neuronal entrenada e implementada tiene una precisión del 90,5% y bajos porcentajes de error (por debajo de 3%) durante la caracterización de vegetales. “Además, hemos podido demostrar que la aplicabilidad de este tipo de tecnologías tiene un gran potencial dentro del campo de la agricultura de precisión”, concluyen los autores del trabajo.

 

El estudio se titula “Robotic Fertilization in Strip Cropping using a CNN Vegetables Detection-Characterization Method”. Y se ha publicado en la revista académica Computers and Electronics in Agriculture. (Fuente: UPM)

 

 

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.