Domingo, 14 de Diciembre de 2025

Actualizada Viernes, 12 de Diciembre de 2025 a las 14:07:09 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Redacción
Lunes, 02 de Octubre de 2023
Medicina

Músculo artificial para estudiar la distrofia muscular de Duchenne

La Distrofia Muscular de Duchenne (DMD) es la distrofia muscular más común diagnosticada durante la infancia, con alrededor de 20.000 casos nuevos cada año. Se trata de un trastorno progresivo del músculo que causa la pérdida de su función de manera que los afectados terminan perdiendo totalmente su independencia y sufriendo problemas médicos graves, con una expectativa de vida promedio de 30 años.

 

La causa de la enfermedad es una mutación en el gen que codifica la distrofina, una proteína que amortigua el impacto de la contracción de los músculos en la membrana de las células. Debido a que la distrofina está ausente, las células musculares se dañan fácilmente.

 

En la actualidad, no existe una cura para la DMD y uno de los desafíos principales con los que se encuentra la comunidad investigadora es crear modelos artificiales que consigan recrear de manera eficaz el daño presente en los músculos de los pacientes, para poder estudiar nuevos tratamientos en el laboratorio.

 

Un nuevo estudio del Instituto de Bioingeniería de Cataluña (IBEC) describe el desarrollo de un modelo 3D de músculo que es capaz de reproducir el daño presente en el tejido muscular de las personas afectadas por la distrofia muscular de Duchenne.

 

El sistema, fabricado a partir de ingeniería de tejidos con células de pacientes, contiene fibras musculares capaces de contraerse al aplicar un estímulo eléctrico. Una característica esencial para crear un modelo artificial de músculo que permita llevar a cabo estudios preclínicos de fármacos para tratar la DMD.

 

El trabajo lo ha liderado Juanma Fernández Costa, investigador senior del IBEC, con Ainoa Tejedera Villafranca, estudiante de doctorado del IBEC, como primera autora. Ambos pertenecen al grupo de Biosensores para bioingeniería, liderado por el profesor de investigación ICREA Javier Ramón Azcón.

 

[Img #69961]

Tejido de músculo esquelético encapsulado y con una configuración 3D. (Imagen: IBEC)

 

“Lo novedoso de este estudio es que hemos buscado modelizar la causa principal de la enfermedad, que es el daño del sarcolema, la membrana de las células musculares. Para nosotros era muy importante poder replicarlo en el laboratorio y lo hemos conseguido. No se había hecho antes”, comenta Juanma Fernández.

 

“Trabajamos mucho tiempo en diferentes protocolos hasta conseguir que apareciera ese daño en las células de pacientes, pero no en las de control, de personas sin Duchenne. Es delicado, porque si estimulas el músculo, puedes causar rotura de fibras también en las células sanas, igual que ocurre cuando hacemos deporte y tenemos agujetas”, añade Ainoa Tejedera.

 

El objetivo de los investigadores era conseguir un modelo que permitiera comprobar si los fármacos son capaces de revertir ese daño en las células. No atacar los síntomas, que es en lo que se centran los tratamientos paliativos, sino ir al origen de la enfermedad.

 

Aunque ya han testado algunos fármacos en este modelo, están trabajando en desarrollar un modelo mejorado, conocido como órgano-en-un-chip. Se trata de una plataforma más avanzada que añade sensores y un sistema de microfluídica al modelo de músculo 3D. Esto permitirá monitorizar el daño celular de forma más eficiente y testar diferentes moléculas o fármacos con mayor rapidez.

 

El estudio se titula “Mimicking sarcolemmal damage in vitro: a contractile 3D model of skeletal muscle for drug testing in Duchenne muscular dystrophy”. Y se ha publicado en la revista académica Biofabrication. (Fuente: IBEC)

 

 

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.