Lunes, 08 de Septiembre de 2025

Actualizada Lunes, 08 de Septiembre de 2025 a las 10:49:48 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Miércoles, 22 de Agosto de 2012
Física

Aumentan en mil veces el voltaje generado por un efecto termoeléctrico

Unos investigadores que estaban estudiando un efecto magnético que convierte calor en electricidad han descubierto cómo amplificarlo mil veces, un primer paso para hacer que esta tecnología sea más práctica y viable comercialmente.

El efecto en cuestión, llamado efecto Seebeck de espín, fue descubierto en 2008, y consiste en una redistribución del espín como consecuencia de la aplicación de un gradiente de temperatura. El espín de los electrones crea una corriente en materiales magnéticos que se detecta como un voltaje en un metal adyacente.

Unos investigadores de la Universidad Estatal de Ohio han descubierto cómo crear un efecto similar en un semiconductor no magnético, y producir más energía eléctrica. A este efecto amplificado le han dado el nombre de Efecto Seebeck gigante de espín.

El equipo de científicos ha conseguido incrementar de modo espectacular la cantidad de voltaje producido por grado de cambio de la temperatura dentro del semiconductor, pasando de los pocos microvoltios que hasta ahora se lograban por la vía convencional, a varios milivoltios, un aumento de mil veces en el voltaje.

Aunque los voltajes logrados con esta versión gigante del efecto siguen siendo diminutos, ese aumento de mil veces en el voltaje generado resulta toda una proeza tecnológica, y un importante paso hacia una fase futura de desarrollo que permita darle a este efecto una utilidad práctica y hacer viable comercialmente un generador basado en él.

La meta final del equipo de Joseph Heremans es lograr un dispositivo de estado sólido, que sea barato y que convierta con gran eficiencia el calor en electricidad. Los dispositivos de esta clase no tendrían ninguna pieza móvil, no se desgastarían con facilidad, y serían muy fiables.

[Img #9468]
Esta línea de investigación podría posibilitar que los dispositivos electrónicos reciclasen parte de su propio calor residual, generado electricidad extra a partir del mismo. En un ordenador, un sistema de conversión eficiente de esa clase podría hacer posible la computación energizada por calor, o, actuando a la inversa, podría proporcionar refrigeración.

Investigadores de muchas partes del mundo están trabajando para desarrollar una electrónica que se valga del espín de los electrones para leer y escribir datos. La espintrónica, que es como se le llama a esa clase de electrónica, cuenta con muchas ventajas potenciales, ya que los dispositivos espintrónicos podrían almacenar más datos en menos espacio, procesar con mayor rapidez esos datos y consumir menos energía. Y el efecto Seebeck de espín puede impulsar el concepto de la espintrónica aún más allá, al usar el calor para inducir una "corriente espintrónica".

Por ahora, el uso práctico del efecto Seebeck gigante de espín aún está lejos en el horizonte tecnológico, puesto que primero habrá que solucionar varios impedimentos técnicos importantes. Sin embargo, el camino ya está abierto.

En el trabajo de investigación y desarrollo también han intervenido Roberto Myers, Christopher Jaworski y Ezekiel Johnston-Halperin.

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.