Lunes, 01 de Diciembre de 2025

Actualizada Lunes, 01 de Diciembre de 2025 a las 13:37:20 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Redacción
Viernes, 21 de Junio de 2024
Medicina y computación

Inteligencia artificial para diagnosticar enfermedades tropicales mediante teléfono móvil

La filariasis es una enfermedad infecciosa tropical común y afecta a más de mil millones de personas a nivel mundial. Dependiendo del parásito, causa linfedema, elefantiasis, picazón y ceguera (conocida como la ceguera de los ríos). Para eliminar la filariasis como un problema de salud pública, se realiza la administración masiva de medicamentos a todas las personas que viven en zonas endémicas. El diagnóstico de esta enfermedad se realiza mediante el examen microscópico de un frotis de sangre por un experto humano, lo cual es laborioso y los expertos no siempre están disponibles.

 

En el marco de la investigación de esta enfermedad, investigadores de Spotlab, del Centro Nacional de Microbiología (CNM) del Instituto de Salud Carlos III (ISCIII), de la Universidad Politécnica de Madrid (UPM) y las Áreas de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN) y Enfermedades Infecciosas (CIBERINFEC) del CIBER-ISCIII, en España todas estas entidades, han desarrollado algoritmos de inteligencia artificial para detectar en la sangre la presencia de microfilarias, las larvas infecciosas que pueden transmitir la filariasis.

 

Estos algoritmos distinguen las especies de parásitos más comunes en África (Loa loa, Mansonella perstans y Wuchereria bancrofti) y el sudeste asiático (Brugia spp), utilizando la cámara de un teléfono móvil conectado a un microscopio óptico con un adaptador impreso en 3D.

 

Para crear este sistema, los investigadores han usado 115 casos clínicos y han validado el sistema en un entorno clínico en el CNM. El sistema tiene una precisión de en torno al 95%.

 

Los autores principales del estudio son Lin Lin, ingeniera especialista en inteligencia artificial y Elena Dacal que trabaja en el equipo clínico, ambas bajo la supervisión de los investigadores principales Miguel Ángel Luengo (Spotlab), José Miguel Rubio (CNM, CIBERINFEC) y María Jesús Ledesma (UPM, CIBERBBN).

 

Además, los investigadores han creado una aplicación móvil llamada HuggingSpot, que está disponible en Google App Store y permite a la comunidad científica descargar los modelos de inteligencia artificial y probarlos.

 

[Img #72882]

Sistema de microscopio inteligente. (Foto: Spotlab)

 

Esta innovación tiene un potencial enorme para ayudar al diagnóstico y a la monitorización de la filariasis, especialmente en contextos con recursos limitados, donde el acceso a técnicos especializados y equipamiento de laboratorio es escaso.

 

El estudio se titula “Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy”. Y se ha publicado en la revista académica Plos Neglected Tropical Diseases. (Fuente: UPM)

 

 

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Quizás también te interese...

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.