Lunes, 20 de Octubre de 2025

Actualizada Lunes, 20 de Octubre de 2025 a las 16:45:02 horas

Tienes activado un bloqueador de publicidad

Intentamos presentarte publicidad respectuosa con el lector, que además ayuda a mantener este medio de comunicación y ofrecerte información de calidad.

Por eso te pedimos que nos apoyes y desactives el bloqueador de anuncios. Gracias.

Continuar...

Redacción
Martes, 23 de Julio de 2024
Neurología y computación

Inteligencia artificial para la detección temprana de demencia

La enfermedad de Alzheimer es la causa más común de demencia y afecta a millones de ancianos en todo el mundo. De hecho, solo en España, se estima que existen más de 900.000 personas afectadas por esta enfermedad que se ha convertido en una prioridad de salud pública. La detección precoz es clave para mejorar la calidad de vida de los afectados y sus familias, pero identificarla en sus estadios iniciales no siempre es fácil. Para intentar mejorar en este campo y lograr mejores resultados, un equipo internacional, que incluye investigadores de la Universidad Politécnica de Madrid (UPM) en España, ha aplicado técnicas de aprendizaje automático (una modalidad de inteligencia artificial) al análisis de diferentes modalidades de imágenes médicas utilizadas para el diagnóstico de enfermedades neurológicas.

 

“Desde un punto de vista clínico, la resonancia magnética (RM) y la tomografía por emisión de positrones (PET) son las dos modalidades de imágenes médicas utilizadas en el diagnóstico de este tipo de enfermedades ya que aportan información complementaria de los aspectos anatómicos y metabólicos de la enfermedad. Pero lamentablemente estas pruebas no se realizan sincrónicamente lo que dificulta su integración y la interpretación adecuada de sus resultados por parte de los profesionales médicos” explica Consuelo Gonzalo, investigadora del Centro de Tecnología Biomédica de la UPM y una de las autoras de esta investigación.

 

Abordar este problema es el objetivo que se marcaron los investigadores de la UPM y la propuesta para ello fue desarrollar una metodología que utiliza las redes neuronales convolucionales, una técnica de aprendizaje automático que potencia las tareas de análisis de imágenes y visión por computador, permitiendo obtener información significativa de imágenes digitales, vídeos y otras entradas visuales, así como tomar medidas basándose en esas entradas.

 

Para ello, los investigadores de la UPM realizaron un análisis sistemático de las imágenes de resonancia magnética y tomografía por emisión de positrones para la evaluación del estado de demencia, utilizando diferentes técnicas de fusión (la fusión temprana, tardía e intermedia). A continuación, diseñaron e implementaron una solución completamente basada en redes neuronales convolucionales (CNN) 3D que extraía características de todo el volumen cerebral en tres dimensiones. Una vez hecho eso, propusieron una estrategia de entrenamiento capaz de manejar un conjunto de datos altamente desequilibrado e incompleto.

 

“Hasta donde sabemos, la metodología propuesta representa el primer trabajo que proporciona un análisis de diferentes técnicas de fusión basada en aprendizaje profundo multimodal para la evaluación de la severidad de la demencia”, explica la investigadora de la UPM. “El tipo de soluciones que se desarrollan en este trabajo puede ser una herramienta de ayuda a la decisión de enorme interés práctico para los neurólogos”, añade.

 

[Img #73197]

El equipo de investigación ha aplicado inteligencia artificial al análisis de diferentes modalidades de imágenes médicas utilizadas para el diagnóstico de enfermedades neurológicas que provocan deterioro cognitivo. En la fotografía, investigadores de la Universidad Politécnica de Madrid trabajando en ello. (Foto: UPM)

 

El equipo que ha realizado el estudio incluye también a investigadores de las universidades italianas de Nápoles y Roma, y la Universidad de Umea en Suecia. La primera firmante del estudio es Michela Gravina, de la Universidad de Nápoles.

 

En trabajos futuros, los investigadores pretenden seguir explorando la fusión de diferentes modalidades, analizando más a fondo las propiedades de la representación de características compartidas. “Se deben investigar enfoques que pretendan mejorar la integración de datos heterogéneos, generalizándolos a casos de estudio con más de dos modalidades de imágenes. También se debe abordar la explicabilidad de los modelos implementados, evaluando las decisiones tomadas por las redes en comparación con el diagnóstico clínico", concluyen.

 

El estudio se titula “Multi input–Multi output 3D CNN for dementia severity assessment with incomplete multimodal data”. Y se ha publicado en la revista académica Artificial Intelligence in Medicine. (Fuente: UPM)

 

 

Copyright © 1996-2022 Amazings® / NCYT® | (Noticiasdelaciencia.com / Amazings.com). Todos los derechos reservados.

Depósito Legal B-47398-2009, ISSN 2013-6714 - Amazings y NCYT son marcas registradas. Noticiasdelaciencia.com y Amazings.com son las webs oficiales de Amazings.

Todos los textos y gráficos son propiedad de sus autores. La reproducción está permitida solo si se incluye el crédito de la fuente (NCYT Amazings) y un enlace dofollow hacia la noticia original.

Excepto cuando se indique lo contrario, la traducción, la adaptación y la elaboración de texto adicional de este artículo han sido realizadas por el equipo de Amazings® / NCYT®.

Con tu cuenta registrada

Escribe tu correo y te enviaremos un enlace para que escribas una nueva contraseña.